Differential and Integral Equations, Volume 6, Number 3, May 1993, pp. 643-653.

A BOUNDARY VALUE PROBLEM WHOSE JUMPING NONLINEARITY IS NEITHER SMOOTH NOR LIPSCHITZIAN

NGUYÊN PHUONG CÁC

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242-1466

(Submitted by: V. Lakshmikantham)

Abstract. Let Ω be a bounded domain in $\mathbb{R}^N (N \ge 1)$ with smooth boundary $\partial\Omega$ and $g: \mathbb{R} \to \mathbb{R}$ for which $\lim_{s \to \pm \infty} \frac{g(s)}{s}$ exist. For a given smooth function h_1 on Ω and a smooth function φ positive on Ω , we are concerned with the number of solutions for large t of the problem $-\Delta u = g(u) + t\varphi + h_1$ on Ω , u = 0 on $\partial\Omega$. We shall assume only that $g(\cdot)$ is continuous, in contrast with many other works which require $g(\cdot)$ to be continuously differentiable and one-sided Lipschitzian.

I. Introduction. Let $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ be a bounded domain with smooth boundary $\partial \Omega$. We denote by

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_k < \cdots$$

the sequence of distinct eigenvalues of the eigenvalue problem

$$-\Delta u = \lambda u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega. \tag{1}$$

Let φ_1 be the eigenfunction corresponding to λ_1 with $\varphi_1 > 0$ on Ω and $\int_{\Omega} \varphi_1^2 ds = 1$.

The following theorem is proved by Lazer and McKenna in [9], Theorem 2.4.

Theorem 2.4 of [9]. Suppose that $g(\cdot) : \mathbb{R} \to \mathbb{R}$ is of class C^1 , that for some k > 1 and some $b_1 < \lambda_{k+1}$,

$$g'(s) \le b_1 \quad for \ each \quad s \in \mathbb{R}.$$
 (2)

Then for each $b \in (\lambda_k, \lambda_{k+1})$ there exists $a^*(b) \in (\lambda_{k-1}, \lambda_k)$ with the property that if

$$\lim_{s \to -\infty} g'(s) = a \in (a^*(b), \lambda_k), \quad \lim_{s \to +\infty} g'(s) = b,$$
(3)

then for every smooth h_1 , $h_1 \perp \varphi_1$ in $L^2(\Omega)$, there exists $t_0 > 0$ such that when $t \geq t_0$ the boundary value problem (abbreviated to BVP in the sequel)

$$-\Delta u = g(u) + t\varphi_1 + h_1 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega \tag{4}$$

has at least three solutions.

It seems to us that three questions might come to mind concerning Theorem 2.4 of [9].

Received for publication January 1992.

AMS Subject Classification: 35J20, 35J25, 49J05.