# PERIODIC SOLUTIONS OF SOME PLANAR NON-AUTONOMOUS POLYNOMIAL DIFFERENTIAL 

Jean Mawhin<br>Institut de Mathématique, Université de Louvain B-1348, Louvain-la-Neuve, Belgium

To the memory of Peter Hess, who left this world too early


#### Abstract

This paper provides a new simple proof and some consequences of a recent existence theorem of Srzednicki for periodic solutions of some planar non-autonomous polynomial differential equations. The special case of a forced equation with a complex polynomial nonlinearity and its connection with the fundamental theorem of algebra is discussed.


1. Introduction. If $p: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial with real coefficients and odd degree, it is well known that, for every continuous function $h:[0, T] \rightarrow \mathbb{R}$, the problem

$$
\begin{equation*}
x^{\prime}=p(x)+h(t), \quad x(0)=x(T) \tag{1}
\end{equation*}
$$

has at least one solution. Observe for example that if $a$ is the coefficient of the term of highest degree of $p$, then $V(x)=a x^{2}$ is a guiding function for (1) which satisfies all the conditions of Proposition VI. 6 in [2]. When $p$ is non-constant and of even degree, if we write

$$
h(t)=\bar{h}+\tilde{h}(t)
$$

with $\bar{h}$ the mean value of $h$ over [0, T], then it follows from Theorem 1 in [3] that there exists $h_{0} \in \mathbb{R}$ such that (1) has at least one solution for $\bar{h}=h_{0}$, no solution for $\bar{h}$ in one of the open half-lines with extremity $h_{0}$ and at least two solutions for $\bar{h}$ in the other open half-line.

In the special case where $h=0$, every possible solution $x$ of (1) is such that

$$
\int_{0}^{T}\left(x^{\prime}(t)\right)^{2} d t=\int_{0}^{T} p[x(t)] x^{\prime}(t) d t=0
$$

and therefore is a constant function, whose value $x_{0}$ is the solution of the algebraic equation $p(x)=0$. Another way to reach the same conclusion is to notice that (1) with $h=0$ is a gradient system. The first existence result for periodic solutions may be viewed therefore as an extension of the elementary theorem in algebra which insures

