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To the memory of Peter Hess, who left this world too early 

Abstract. This paper provides a new simple proof and some consequences of a recent existence 
theorem of Srzednicki for periodic solutions of some planar non-autonomous polynomial differ
ential equations. The special case of a forced equation with a complex polynomial nonlinearity 
and its connection with the fundamental theorem of algebra is discussed. 

1. Introduction. If p : R ---+ R is a polynomial with real coefficients and odd 
degree, it is well known that, for every continuous function h [0, T] ---+ R, the 
problem 

x 1 = p(x) + h(t), x(O) = x(T) (1) 

has at least one solution. Observe for example that if a is the coefficient of the term 
of highest degree of p, then V (x) = ax2 is a guiding function for (1) which satisfies 
all the conditions of Proposition VI.6 in [2]. When p is non-constant and of even 
degree, if we write 

h(t) = h + h(t), 

with h the mean value of hover [0, T], then it follows from Theorem 1 in [3] that 
there exists ho E R such that (1) has at least one solution for h = ho, no solution for 
h in one of the open half-lines with extremity h0 and at least two solutions for h in 
the other open half-line. 

In the special case where h = 0, every possible solution x of (1) is such that 

and therefore is a constant functibn, whose value xo is the solution of the algebraic 
equation p (x) = 0. Another way to reach the same conclusion is to notice that (1) with 
h = 0 is a gradient system. The first existence result for periodic solutions may be 
viewed therefore as an extension of the elementary theorem in algebra which insures 
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