Differential and Integral Equations, Volume 7, Number 4, July 1994, pp. 1041-1053.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF REACTION-DIFFUSION SYSTEMS OF LOTKA-VOLTERRA TYPE

Kyûya Masuda

Department of Mathematics, Rikkyo University, Tokyo, 171

Katsuo Takahashi

Department of Mathematical Sciences, University of Tokyo, Tokyo, 153

Dedicated to the memory of Professor P. Hess

1. Introduction. As a mathematical model for the population dynamics of *N*-species in biology, Lotka [12] and Volterra [17] proposed the ordinary differential system of the form:

$$dv_j/dt = (-e_j + b_j^{-1} \sum_{k=1}^N a_{jk} v_k) v_j, \quad j = 1, \dots, N,$$
 (LV)

where e_j , $b_j(> 0)$, a_{jk} are given constants; and v_j denotes the biomass of the *j*-species; and investigated the asymptotic behavior of v_1, \ldots, v_N for large time *t*.

For N = 2, there are extensive literatures on (LV) (or (RD) below), e.g., Copell [5], Henry [7], Rothe [16]. However, for $N \ge 3$, little seems to have been known; see Amann [2, 3], Krikorian [11], Fife-Mimura [6], Friedmann-Tzavars [8], Oshime [14] and others.

In the present paper we consider the reaction-diffusion's version of (LV) of the form:

$$\frac{\partial}{\partial t}u_{j} = d_{j}\Delta u_{j} + u_{j}f_{j}(u) \quad (x \in \Omega, \ t > 0)$$

$$\frac{\partial}{\partial \nu}u_{j}\Big|_{\partial\Omega} = 0, \quad (t > 0); \quad u_{j}\Big|_{t=0} = \phi_{j} \quad (j = 1, \dots, N),$$
(RD)

where Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, d_j is a positive constant, $\partial/\partial\nu$ denotes the outer normal derivative to $\partial\Omega$, and ϕ_j given smooth non-negative, and not identically zero function satisfying the compatibility condition: $\partial\phi_j/\partial\nu = 0$ on $\partial\Omega$. The purpose of the present paper is to study the asymptotic behavior of solutions of (RD) for large t under some assumptions on f_j .

We suppose that f_j , j = 1, ..., N, satisfies the following assumptions.

Received September 1993.

AMS Subject Classification: 35K57.