THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLUID IN \mathbb{R}^{2} WITH A MEASURE AS THE INITIAL VORTICITY

Tosio Kato
Department of Mathematics, University of California, Berkeley, CA 94720

Dedicated to the memory of Peter Hess

Abstract

Global (in time) solutions of the Navier-Stokes equation, and the associated vorticity equation, for an incompressible fluid in \mathbb{R}^{2} are constructed, with a measure ω as the initial vorticity. Regularity of the velocity and the vorticity fields as well as monotonicity (in time) of the L^{p}-norms of the vorticity are proved. Estimates for the singularity at $t=0$ and the decay rate at $t=\infty$ of their L^{p}-norms are deduced, and found to be almost identical with those for the solutions of the linear (heat) equation. Uniqueness is proved under a mild restriction on the atomic part ω_{a} of ω, with no restriction on the size of the continuous part ω_{c}. For example, it suffices that the ℓ^{p}-norm of the atoms (regarded as a sequence) for some $p \in[4 / 3,2)$ do not exceed a certain numerical value η_{p}, which is explicitly given.

Introduction. This paper is concerned with the initial value problem for the Navier-Stokes equation for an incompressible fluid in \mathbb{R}^{2}, and the associated vorticity equation. The former may be written in the form (cf. [11,12]):

$$
\begin{equation*}
\partial_{t} u-\Delta u+\Pi \partial(u \otimes u)=0, \quad u=\Pi u, \quad\left(\partial_{t}=\partial / \partial t, \partial=\operatorname{grad}\right) \tag{NS}
\end{equation*}
$$

where $u=u(t, x)$ is the velocity field, Π is the projection onto solenoidal vectors along gradients, $u \otimes u$ is a tensor with $j k$-component $u_{k} u_{j}$, and $\partial(u \otimes u)$ is a vector with j-th component $\partial_{k}\left(u_{k} u_{j}\right)=u_{k} \partial_{k} u_{j}$ (summation convention). The kinematic viscosity is set equal to one.

The associated (scalar) vorticity $\zeta=\partial \wedge u=\partial_{1} u_{2}-\partial_{2} u_{1}$ satisfies the vorticity equation
(VOR)

$$
\partial_{t} \zeta-\Delta \zeta+\partial \cdot(\zeta S * \zeta)=0, \quad S(x)=(2 \pi)^{-1}|x|^{-2}\left(x_{2},-x_{1}\right)
$$

where $*$ denotes convolution. $S *$ is a linear operator such that $u=S * \zeta$ solves the equations $\partial \cdot u=0$ and $\partial \wedge u=\zeta$, and has the continuity property (Hardy-Littlewood-Sobolev inequality)

$$
\begin{equation*}
\|S * \phi\|_{p} \leq \sigma_{q}\|\phi\|_{q} \quad \text { for } 1 / p=1 / q-1 / 2, \quad 1<q<2 \tag{0.1}
\end{equation*}
$$

[^0]
[^0]: Received August 1993.
 AMS Subject Classification: 35K05, 35K22, 35Q10, 76D05.

