THE NAVIER-STOKES EQUATION FOR AN INCOMPRESSIBLE FLUID IN \mathbb{R}^2 WITH A MEASURE AS THE INITIAL VORTICITY

Tosio Kato

Department of Mathematics, University of California, Berkeley, CA 94720

Dedicated to the memory of Peter Hess

Abstract. Global (in time) solutions of the Navier-Stokes equation, and the associated vorticity equation, for an incompressible fluid in \mathbb{R}^2 are constructed, with a measure ω as the initial vorticity. Regularity of the velocity and the vorticity fields as well as monotonicity (in time) of the L^p -norms of the vorticity are proved. Estimates for the singularity at t=0 and the decay rate at $t=\infty$ of their L^p -norms are deduced, and found to be almost identical with those for the solutions of the linear (heat) equation. Uniqueness is proved under a mild restriction on the atomic part ω_a of ω , with no restriction on the size of the continuous part ω_c . For example, it suffices that the ℓ^p -norm of the atoms (regarded as a sequence) for some $p \in [4/3, 2)$ do not exceed a certain numerical value η_p , which is explicitly given.

Introduction. This paper is concerned with the initial value problem for the Navier-Stokes equation for an incompressible fluid in \mathbb{R}^2 , and the associated vorticity equation. The former may be written in the form (cf. [11,12]):

(NS)
$$\partial_t u - \Delta u + \Pi \partial(u \otimes u) = 0$$
, $u = \Pi u$, $(\partial_t = \partial/\partial t, \partial = \text{grad})$,

where u = u(t, x) is the velocity field, Π is the projection onto solenoidal vectors along gradients, $u \otimes u$ is a tensor with jk-component $u_k u_j$, and $\partial(u \otimes u)$ is a vector with j-th component $\partial_k(u_k u_j) = u_k \partial_k u_j$ (summation convention). The kinematic viscosity is set equal to one.

The associated (scalar) vorticity $\zeta = \partial \wedge u = \partial_1 u_2 - \partial_2 u_1$ satisfies the vorticity equation

(VOR)
$$\partial_t \zeta - \Delta \zeta + \partial \cdot (\zeta S * \zeta) = 0, \quad S(x) = (2\pi)^{-1} |x|^{-2} (x_2, -x_1),$$

where * denotes convolution. S* is a linear operator such that $u = S*\zeta$ solves the equations $\partial \cdot u = 0$ and $\partial \wedge u = \zeta$, and has the continuity property (Hardy-Littlewood-Sobolev inequality)

$$||S * \phi||_p \le \sigma_q ||\phi||_q$$
 for $1/p = 1/q - 1/2$, $1 < q < 2$, (0.1)

Received August 1993.

AMS Subject Classification: 35K05, 35K22, 35Q10, 76D05.