ON THE EXACT SOLUTIONS OF THE INTERMEDIATE LONG-WAVE EQUATION

J.P. Albert

Department of Mathematics, University of Oklahoma, Norman, OK 73019

J.F. TOLAND

School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

To the memory of Peter Hess

1. Introduction. The intermediate long-wave equation was introduced by R.I. Joseph [4] as a mathematical model of nonlinear dispersive waves on the interface between two fluids of different positive densities contained at rest in a long channel with a horizontal top and bottom, the lighter fluid forming a horizontal layer above a layer of the same depth of the heavier fluid. When variables have been re-scaled, it is the pseudo-differential operator equation (see [5])

$$\eta_t + 2\eta\eta_x - (N_H\eta)_x + (1/H)\eta_x = 0, \tag{1}$$

where H > 0 and the Fourier multiplier operator N_H is given by

$$\widehat{N}_H \eta(k) = (k \coth k H) \widehat{\eta}(k).$$

In common with the classical KdV and Benjamin-Ono equations, between which it was intended to form a model-theoretical bridge [4], equation (1) was found to have a family of exact solitary-wave solutions: namely,

$$\eta(x,t) = \phi_{C,H}(x - Ct),$$

where

$$\phi_{C,H}(x) = \left[\frac{a\sin aH}{\cosh ax + \cos aH}\right], \quad x \in \mathbb{R},$$

for arbitrary C > 0 and H > 0, and a is the unique solution of the transcendental equation

$$aH \cot aH = (1 - CH), \quad a \in (0, \pi/H).$$

Received October 1993.

AMS Subject Classifications: 35B50, 35J65, 35Q53, 76B15.