Differential and Integral Equations, Volume 6, Number 4, July 1993, pp. 757-771.

BIFURCATION FROM INFINITY AND MULTIPLE SOLUTIONS FOR AN ELLIPTIC SYSTEM

RAFFAELE CHIAPPINELLI

Dipartimento di Matematica, Università degli Studi della Calabria 87036 Arcavacata di Rende, Italy

DJAIRO G. DE FIGUEIREDO[†]

IMECC-UNICAMP, Caixa Postal 6065, 13081 Campinas, S.P., Brazil

(Submitted by: Peter Hess)

Abstract. In this paper, we study multiplicity of solutions for a system of semilinear elliptic equations of the form

$$-\Delta u = \lambda u + f(x, u) - v$$

 $-\Delta v = \delta u - \gamma v$

in some bounded smooth domain in \mathbb{R}^N , subject to homogeneous Dirichlet boundary conditions. The parameters δ and γ are positive and satisfy certain relations involving also the first eigenvalue λ_1 of $(-\Delta_0, H^1(\Omega))$. The parameter λ varies in a neighborhood of $\hat{\lambda}_1 := \lambda_1 + \delta/(\gamma + \lambda_1)$. We establish a priori bounds for solutions of the system when λ is an appropriate side of $\hat{\lambda}_1$, depending on the behavior of f(x, s) and $s \to \pm \infty$. These bounds, together with a bifurcation from infinity, gives the multiplicity results.

Introduction. Let Ω be a bounded open subset of \mathbb{R}^N with smooth boundary $\partial \Omega$. Consider the semilinear elliptic system depending on the real parameter λ

$$(S_{\lambda}) \quad \left\{ egin{array}{ll} -\Delta u = \lambda u + f(x,u) - v \ -\Delta v = \delta u - \gamma v \end{array}
ight. ext{ in } \Omega$$

subject to Dirichlet boundary conditions u = v = 0 on $\partial\Omega$; here f = f(x, s) is a real-valued continuous function on $\overline{\Omega} \times \mathbb{R}$ and γ , δ are nonnegative constants. The solutions (u, v) of (S_{λ}) represent steady-state solutions of reaction-diffusion systems of interest in Biology, see e.g., Rothe [14] and Lazer-McKenna [9].

The non-parametric system S_0 ($\lambda = 0$) was studied among others by De Figueiredo-Mitidieri [5], who proved the existence of one or even two [pairs (u, v) of] solutions under various assumptions on f, using both monotone iteration techniques and variational methods. In this paper, we study existence and multiplicity of solutions to (S_{λ}) when λ is near $\hat{\lambda}_1$,

$$\hat{\lambda}_1 := \lambda_1 + \frac{\delta}{\gamma + \lambda_1}$$

Received June 1992.

[†]Partially supported by the CNPq.

AMS Subject Classification: 35B45, 35B50, 35J50, 35J55.