ON THE ZEROS OF ASSOCIATED POLYNOMIALS OF CLASSICAL ORTHOGONAL POLYNOMIALS*

Árpád Elbert
Mathematical Institute of the Hungarian Academy of Sciences
Budapest, P.O.B. 127, H-1364, Hungary
Andrea Laforgia
Dipartimento di Matematica, Università degli Studi della Basilicata
Via N. Sauro, 85-85100 Potenza, Italy

(Submitted by: W.N. Everitt)

Abstract

We establish some general properties of the associated polynomials $r_{n-1}(x)$ of classical orthogonal polynomials $p_{n}(x)$. As a consequence of our results we prove a conjecture recently formulated by A. Ronveaux on the location of the zeros of $r_{n-1}(x)$ and $p_{n}^{\prime}(x)$.

1. Introduction. For $n=0,1 \ldots$ we denote by $p_{n}(x)$ any classical orthogonal polynomial (Jacobi, Hermite, and Laguerre) of degree n, on the interval (a, b) with the weight $\mu(x)$ where

$$
\mu(x)=\left\{\begin{array}{l}
(1-x)^{\alpha}(1+x)^{\beta},-1<x<1, \alpha>-1, \beta>-1 \text { in Jacobi case, } \\
x^{\alpha} e^{-x}, 0<x<\infty, \alpha>-1 \text { in Laguerre case } \\
e^{-x^{2}},-\infty<x<\infty \quad \text { in Hermite case. }
\end{array}\right.
$$

It is well known that the classical orthogonal polynomials satisfy the second-order differential equation

$$
\begin{equation*}
\sigma(x) y^{\prime \prime}+\tau(x) y^{\prime}+\lambda_{n} y=0 \tag{1.1}
\end{equation*}
$$

where $\sigma(x)$ is a polynomial in x of the second degree at most, $\tau(x)$ is a polynomial of the first degree, and λ_{n} is a constant depending on n.

We define the associated polynomial $r_{n-1}(x)$ of $p_{n}(x)$ by mieans of the integral

$$
\begin{equation*}
r_{n-1}(x)=\frac{1}{c_{0}} \int_{a}^{b} \frac{p_{n}(x)-p_{n}(t)}{x-t} \mu(t) d t, \quad n=1,2, \ldots, \tag{1.2}
\end{equation*}
$$

where

$$
c_{0}=\int_{a}^{b} \mu(t) d t
$$

Received January 1992, in revised form June 1992.
*Work sponsored by Ministero della Ricerca Scientifica e Tecnologica of Italy.
AMS Subject Classification: 33C25.

