DISTRIBUTIONAL AND SMALL SOLUTIONS FOR LINEAR TIME-DEPENDENT DELAY EQUATIONS

K.L. COOKET

Department of Mathematics, Pomona College, Claremont, CA 91711

S.M. VERDUYN LUNELT

Faculteit Wiskunde en Informatica, Vrije Universiteit de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

(Submitted by: A.R. Aftabizadeh)

Abstract. In this paper, the relation between distributional and small solutions of linear time-dependent delay equations is studied. A class of infinite order distributional solutions is defined such that the existence of a small solution implies the existence of a distributional solution in this class. A sufficient condition for the nonexistence of small solutions is proved.

Introduction. Consider a linear time-dependent delay equation

$$\dot{x}(t) = A(t)x(t) + B(t)x(t-1), \qquad t \ge s,$$
 (0.1)

where $A(\cdot)$ and $B(\cdot)$ are real continuous $n \times n$ matrix functions. To define a solution of (0.1) one has to specify an initial condition on the interval [s-1,s]. Let $x_t(\theta) = x(t+\theta)$ for $-1 \le \theta \le 0$ and C = C[-1,0] be the Banach space of continuous functions on [-1,0] provided with the supremum norm.

The initial value problem (0.1) with $x_s = \varphi$ and $\varphi \in \mathcal{C}$ is well-posed, that is, for any given $\varphi \in \mathcal{C}$ a solution $x = x(\cdot; \varphi)$ exists and is unique. Furthermore, the solution can be obtained using the method of steps: On the interval [s, s+1] equation (0.1) reduces to an inhomogeneous ODE and can be solved, then using the solution on [s, s+1] equation (0.1) reduces to an inhomogeneous ODE on the interval [s+1, s+2] etc. In particular, if $B(\cdot)$ is smooth, the solution becomes smoother with increasing time.

A solution x of (0.1) is called *small* if

$$\lim_{t \to \infty} x(t)e^{kt} = 0 \quad \text{ for every } \quad k \in \mathbb{R}. \tag{0.2}$$

The zero solution is a trivial small solution. Small solutions that are not identically zero are called nontrivial. In an earlier paper [11] we have studied the existence

Received February 1992, in revised form January 1993.

[†]Partially supported by a U.S. NSF research grant.

[†]The research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

AMS Subject Classifications: 34K05, 45E10.