A REMARK ON THE EQUALITY $\det Df = \operatorname{Det} Df^*$

Luigi Greco

Dipartimento di Matematica e Applicazioni, "R. Caccioppoli", Università Via Cintia, Complesso Monte S. Angelo, 80126 Napoli, Italy

(Submitted by: P.L. Lions)

Abstract. We prove equality between the Jacobian and the so-called *distributional* or *weak determinant* introduced by J. Ball [1]. This result is slightly more general than the one recently obtained in [10].

1. Introduction. For Ω a domain of \mathbb{R}^N and $f:\Omega \to \mathbb{R}^N$, $f=(f^1,\cdots,f^N)$, a mapping of Sobolev class $W^{1,1}_{loc}(\Omega;\mathbb{R}^N)$, we denote by $Df(x):\mathbb{R}^N \to \mathbb{R}^N$ $(x \in \Omega)$ the differential and by $J(x;f)=\det Df(x)$ the Jacobian. A mapping $f\in W^{1,1}_{loc}(\Omega;\mathbb{R}^N)$ is said to be orientation preserving if $J(x;f)\geq 0$, for almost every $x\in\Omega$.

Let $f \in W^{1,p}_{loc}(\Omega; \mathbb{R}^N)$ with $p \geq N^2/(N+1)$; the weak Jacobian of f is the Schwartz distribution $J_f = \text{Det } Df \in \mathcal{D}'(\Omega)$ defined by the rule

$$\langle J_f, arphi
angle = - \int_{\Omega} f^N(x) \, J(x; (f^1, \ldots, f^{N-1}, arphi)) \, dx,$$

for any test function $\varphi \in C_0^{\infty}(\Omega)$. In [13] S. Müller proved a conjecture of J. Ball that, if Det $Df \in L^1$, then det Df = Det Df; i.e.,

$$\int_{\Omega} \varphi(x) J(x; f) dx = -\int_{\Omega} f^{N}(x) J(x; (f^{1}, \dots, f^{N-1}, \varphi)) dx, \tag{1.1}$$

for any test function $\varphi \in C_0^\infty(\Omega)$. In [14] it is proved that, if $f \in W^{1,N}(\Omega;\mathbb{R}^N)$ is an orientation preserving mapping, then the Jacobian J belongs locally to the Zygmund class $L \log L$; for another proof of this result, see [8]. On the other hand, in [10] an almost optimal condition for the integrability of the Jacobian of an orientation preserving mapping is given; in particular, it is proved that if f is an orientation preserving mapping and $|Df| \in \frac{L^N}{\log L}$ (see Section 2), then $J \in L^1_{\text{loc}}$ and the following uniform bound holds:

$$\int_{B} J(x;f) \, dx \le c(N) \int_{3B} \frac{|Df(x)|^{N}}{\log\left(e + \frac{|Df(x)|}{|Df|_{3B}}\right)}, \tag{1.2}$$

Received March 1992.

^{*}This work has been performed as a part of a National Research Project supported by M.U.R. S.T. (40% 1989).

AMS Subject Classifications: 49A50, 73C50.