OPTIMAL GRADIENT BOUNDS AND HEAT EQUATION*

Andrea Cianchi
Istituto di Matematica, Facoltà di Architettura, Università di Firenze
Via dell'Agnolo, 14-50122 Firenze, Italy

(Submitted by: A.R. Aftabizadeh)

Abstract

Let $u_{q, h}$ be the solution to the heat equation $\frac{\partial}{\partial t} u-\Delta u=q(x, t)$ in $\mathbb{R}^{n} \times(0, T]$ satisfying $u(x, 0)=h(x)$ on \mathbb{R}^{n}. We find the maximum of $\left\|D u_{q, h}(\cdot, T)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$ in terms of the decreasing rearrangements of q and h. The techniques are based on the study of level sets.

1. Introduction. The background of the present paper are a priori estimates for the gradient of solutions to linear parabolic equations. Bounds for L^{p} norms of the gradient of such solutions in terms of the data are classic (see e.g. [4]). On the other hand, not much seems to be known about the optimal form of this kind of estimates. In [5] sharp inequalities involving L^{2} norms have been proved. As far as we know, the question for powers p greater than 2 is still open. Our purpose here is to study the problem for the heat equation when $p=\infty$. More precisely, consider the following Cauchy problem:

$$
\begin{cases}\frac{\partial}{\partial t} u-\Delta u=q(x, t) & \text { in } \mathbb{R}^{n} \times(0, T] \tag{1.1}\\ u(x, 0)=h(x) & \text { on } \mathbb{R}^{n} .\end{cases}
$$

Here, $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}{ }^{2}}$, the Laplace operator, and the data q and h are real-valued functions on $\mathbb{R}^{n} \times(0, T]$ and on \mathbb{R}^{n}, respectively.

We deal with the customary solution $u_{q, h}$ to problem (1.1) given by

$$
\begin{equation*}
u_{q, h}(x, t)=\int_{0}^{t} \int_{\mathbb{R}^{n}} K(x-y, t-\tau) q(y, \tau) d y d \tau+\int_{\mathbb{R}^{n}} K(x-y, t) h(y) d y \tag{1.2}
\end{equation*}
$$

where $K(x, t)=(4 \pi t)^{-n / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right)$, the heat kernel.
According to a classical model for the heat conduction $u_{q, h}(x, t)$ represents the temperature at point x and at time t of a homogeneous isotropic solid medium occupying the whole space, h is the initial temperature and q stands for density of power of a heat source or sink, depending on whether $q>0$ or $q<0$. Moreover, $D u_{q, h}$, the gradient of $u_{q, h}$ with respect to the x variables, is the negative of the heat flux.

[^0]
[^0]: Received April 1992.
 *This work was partially supported by M.U.R.S.T. (National Research Project 40\%). AMS Subject Classification: 35K05, 35B45.

