Differential and Integral Equations, Volume 6, Number 5, September 1993, pp. 1033-1040.

ENERGY AND REGULARITY INEQUALITIES FOR VOLTERRA EQUATIONS OF PARABOLIC TYPE

YASUHIRO FUJITA

Department of Mathematics, Toyama University, Toyama 930, Japan

(Submitted by: G. Da Prato)

Abstract. This paper presents an energy inequality and a regularity inequality for the Volterra equation of parabolic type. They correspond to the energy equality and the regularity inequality for the evolution equation of parabolic type, respectively.

0. Introduction. Let W(dt) be the measure on $[0, \infty)$ so that W([0, t]) satisfies the integral equation

$$a W([0,t]) + \int_0^t k(t-s) W([0,s]) \, ds = t, \quad t \ge 0 \tag{0.1}$$

for some constant $a \ge 0$, and non-negative and non-increasing function $k \in L^1_{\text{loc}}([0,\infty))$ with $k(\infty) = 0$. In addition, suppose that $k(0+) = \infty$ if a = 0. Such a measure satisfying $W(\{t\}) = 0$ for $t \ge 0$ exists uniquely (see [10, p. 64], [9, Proposition]).

In the present paper we are concerned with the Volterra equation of parabolic type

$$u(t) = \phi - \int_{[0,t]} Lu(t-s)W(ds), \quad t \ge 0.$$
 (VE)

Here L is a non-negative and self-adjoint operator on a Hilbert space X with the norm $\|\cdot\|$, and ϕ belongs to the domain D(L) of L. The existence and the uniqueness of the solution of (VE) has been studied by many authors ([3], [4], [5], [6], [9], [10] etc.). Here a function u is called a *solution* of (VE) if (i) $u(t), t \ge 0$, belongs to D(L), (ii) u and Lu belong to $C([0,\infty); X)$ with $\|u(t)\| + \|Lu(t)\| \le Ce^{\rho t}, t \ge 0$, for some $C > 0, \rho \ge 0$, and (iii) u satisfies (VE) for every $t \ge 0$. Note that when $k \equiv 0$, (VE) is the integral form of the evolution equation

$$\begin{cases} \frac{\partial u}{\partial t}(t) = -Lu(t)/a, \quad t > 0, \\ u(0) = \phi. \end{cases}$$
 (EE)

The aim of the present paper is to derive an energy inequality and a regularity inequality for (VE), which correspond to the energy equality and the regularity inequality for (EE), respectively.

Received for publication June 1992.

AMS Subject Classification: 45N05.