LOWER BOUNDS FOR THE DEFICIENCY INDICES OF $T_{0}\left(\tau^{+}\right) T_{0}(\tau)$, WHERE τ IS
 A LINEAR ORDINARY DIFFERENTIAL EXPRESSION

Frank D. Isaacs
Mathematics Program, Graduate School, The City University of New York
New York, N.Y. 10036
(Submitted by: R.D. Nussbaum)

Abstract

Let τ be a linear ordinary differential expression with smooth coefficients, defined on an interval $I \subseteq \mathbb{R}$, and let τ^{+}denote its formal adjoint. We consider the nonnegative, symmetric operator $T_{0}\left(\tau^{+}\right) T_{0}(\tau)$ operating in $L^{2}(I)$ and show that the dimensions of its deficiency spaces (which are equal) are bounded below by $2\left(\operatorname{dim} \operatorname{ker} T_{1}\left(\tau^{+}\right)-\right.$ $\operatorname{dim} \operatorname{ker} T_{0}(\tau)+\operatorname{dim} \operatorname{ker} T_{1}(\tau)-\operatorname{dim} \operatorname{ker} T_{0}\left(\tau^{+}\right)$), and that the dimensions of the deficiency spaces equal this lower bound when $0 \notin \sigma_{e}(\tau)$, the essential spectrum of τ, equivalently, when $0 \notin \sigma\left(\tau^{+} \tau\right)$. From this result, we develop other lower bounds for the dimensions of the deficiency spaces of $T_{0}\left(\tau^{+}\right) T_{0}(\tau)$.

Here is some notation, briefly. I denotes an interval of the real line \mathbb{R}. Let τ be a linear ordinary differential expression with $C^{\infty}(I)$ coefficients, of integer order $n>0$, which is defined on I, and let τ^{+}denote its formal adjoint. For any linear ordinary differential expression ζ, let $T_{0}(\zeta)$ denote its closed minimal operator and let $T_{1}(\zeta)$ denote its (closed) maximal operator. We denote by $\sigma_{e}(\zeta)$ the essential spectrum of $T_{1}(\zeta)$. If it is important to specify the interval, we write $T_{i}(\zeta, I), i=0,1$, or $\sigma_{e}(\zeta, I)$. For any operator $T, \mathcal{D}(T)$ denotes its domain. If S is a densely defined symmetric operator whose adjoint is S^{*}, let $\mathcal{D}_{ \pm}\left(S^{*}\right)=\left\{f \in \mathcal{D}\left(S^{*}\right): S^{*}(f)= \pm i f\right\}$.

Our goal is information about $\operatorname{dim} \mathcal{D}_{ \pm}\left(T_{1}\left(\tau \tau^{+}\right)\right)$, granted information about $T_{1}\left(\tau^{+} \tau\right)$ and related operators. Our method is to estimate

$$
\begin{equation*}
d_{ \pm}=\operatorname{dim}\left\{f \in \mathcal{D}_{ \pm}\left(T_{1}\left(\tau^{+} \tau\right)\right): \tau(f) \in L^{2}(I)\right\} \tag{1}
\end{equation*}
$$

This is pertinent since $\tau^{+} \tau(f)= \pm$ if and $\tau(f) \in L^{2}(I)$ entail $\tau(f) \in \mathcal{D}_{ \pm}\left(T_{1}\left(\tau \tau^{+}\right)\right)$ (that $f, \tau(f) \in C^{\infty}(I)$ follows from the coefficients of τ being in $C^{\infty}(I)$ [1, XIII.1.4]). We prove:

First, that $0 \notin \sigma_{e}\left(\tau^{+} \tau\right)$ entails $0 \notin \sigma_{e}\left(\tau^{+}\right)$(whence $0 \notin \sigma\left(\tau^{+} \tau\right)$, if and only if $0 \notin \sigma_{e}\left(\tau^{+}\right)$if and only if $\left.0 \notin \sigma(\tau)\right)$.

Second, we extend to arbitrary intervals a formula of Kauffman, Read, and Zettl [7, II.4.4]:

$$
\begin{aligned}
\operatorname{dim} \mathcal{D}\left(T_{1}(\tau)\right) / \mathcal{D}\left(T_{0}(\tau)\right) & \geq \operatorname{dim} \operatorname{ker} T_{1}\left(\tau^{+}\right)-\operatorname{dim} \operatorname{ker} T_{0}(\tau) \\
& +\operatorname{dim} \operatorname{ker} T_{1}(\tau)-\operatorname{dim} \operatorname{ker} T_{0}\left(\tau^{+}\right)
\end{aligned}
$$

Received for publication in revised form June 1992.
AMS Subject Classifications: 47B25, 34B05, 47E05.

