EXISTENCE OF SOLUTIONS OF SEMILINEAR ELLIPTIC PROBLEMS ON UNBOUNDED DOMAINS

WEN-CHING LIEN, SHYUH-YAUR TZENG, HWAI-CHIUAN WANG Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan

(Submitted by: P.L. Lions)

Abstract. In this paper we study the existence of solutions of the semilinear elliptic problem $-\Delta u + \lambda u = |u|^{p-2}u$ on some classes of unbounded domains.

1. Introduction. Let $N \ge 2$ and $2 , where <math>2^* = \frac{2N}{N-2}$ for $N \ge 3$, $2^* = \infty$ for N = 2. Throughout this paper, we will study the existence of positive solutions of the semilinear elliptic equation

$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2} u & \text{in } \Omega\\ u \in H_0^1(\Omega), \end{cases}$$
(1.1)

where Ω is an unbounded domain in \mathbb{R}^N , and $\lambda \in \mathbb{R}^+$.

Associated with equation (1.1), we consider the energy functional on $H_0^1(\Omega)$:

$$F(u)=rac{1}{2}\int_{\Omega}(|
abla u|^2+\lambda u^2)-rac{1}{p}\int_{\Omega}|u|^p$$

and the constraint energy functional $f(u) = \int_{\Omega} (|\nabla u|^2 + \lambda u^2)$ on the manifold $\{u \in H_0^1(\Omega) \mid \int_{\Omega} |u|^p = 1\}$. Let

$$\alpha(\Omega) = \inf \left\{ \int_{\Omega} (|\nabla u|^2 + \lambda u^2) \mid u \in H_0^1(\Omega), \int_{\Omega} |u|^p = 1 \right\}.$$
(1.2)

Then we say that $\alpha(\Omega)$ or Ω admits a minimizer if there is $u \in H^1_0(\Omega)$ satisfying

$$\int_{\Omega} (|\nabla u|^2 + \lambda u^2) = lpha(\Omega), \quad ext{and} \quad \int_{\Omega} |u|^p = 1$$

In Section 2 we develop several tools for general domains (bounded or unbounded), which will be used later. It is known that given a minimizing sequence $\{u_n\}$ of some energy functional which is lower semicontinuous and bounded below, we may apply the Ekeland Variational Principle to get a Palais-Smale (or briefly $(PS)_c$) sequence $\{v_n\}$ such that $||u_n - v_n|| < \frac{1}{n}$ for each n (see Brezis-Nirenberg ([5])). Though the energy functional F is not bounded below, however in Theorem 2.1 we prove that for

Received September 1992.

AMS Subject Classification: 35J20, 35J25.