ON HARNACK'S INEQUALITY FOR A CLASS OF STRONGLY DEGENERATE SCHRÖDINGER OPERATORS FORMED BY VECTOR FIELDS

Guozhen Lu

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125

(Submitted by: Haim Brezis)

1. Introduction. Let X_1, \ldots, X_m be real C^{∞} vector fields on \mathbb{R}^d $(d \geq 3)$ satisfying Hörmander's condition of type s, i.e., X_1, \ldots, X_m and their commutators up to order s span the tangent space of \mathbb{R}^d at each point of \mathbb{R}^d . Let $\Omega \subset \mathbb{R}^d$ be an open and connected domain. As studied in [15], we can define a metric ρ on Ω associated to the vector fields. Moreover, the doubling property holds on (Ω, ρ) ; i.e.,

$$|B(x, 2\delta)| \le C|B(x, \delta)|,$$

for any $x \in E \subseteq \Omega$ and $\delta > 0$. Thus (Ω, ϱ) is a homogeneous metric space in the sense of [6].

We say a locally integrable nonnegative function w(x) is in the class of $A_2(\mathbb{R}^d, \varrho)$, or $w \in A_2$, if

$$\sup_{B \subset \mathbb{R}^d} \frac{1}{|B|} \int_B w(x) \, dx \cdot \frac{1}{|B|} \int_B w(x)^{-1} dx \le c_w$$

with c_w independent of the metric balls $B \subset \mathbb{R}^d$. This c_w is called the A_2 constant of w. If the above inequality only holds for all balls $B \subset \Omega$, then we say $w \in A_2(\Omega)$.

We now state the weighted Poincaré and Sobolev inequalities for vector fields satisfying Hőrmander's condition proved in [13]. Let $w \in A_2(\Omega)$, $E \Subset \Omega$. Then there exist constants C > 0, $r_0 > 0$ and $\tau > 2$ such that for any metric ball $B = B(x, r) \subset \Omega$, $x \in E$, $r \leq r_0$ and $f \in C^{\infty}(\overline{B})$, we have

$$\left(\frac{1}{w(B)}\int_{B}|f-f_{B}|^{\tau}w\right)^{1/\tau} \leq Cr\left(\frac{1}{w(B)}\int_{B}\sum_{i=1}^{m}|X_{i}f|^{2}w\right)^{1/2}.$$
 (1.1)

For any $f \in C_0^{\infty}(B)$, we have

$$\left(\frac{1}{w(B)}\int_{B}|f|^{\tau}w\right)^{1/\tau} \le Cr\left(\frac{1}{w(B)}\int_{B}\sum_{i=1}^{m}|X_{i}f|^{2}w\right)^{1/2},\tag{1.2}$$

where $w(B) = \int_B w(x) dx$.

Received for publication December 1992.

AMS Subject Classifications: 35J10, 35B05.