ON THE TIME MAP OF A NONLINEAR TWO POINT BOUNDARY VALUE PROBLEM

Shin-Hwa Wang
Department of Mathematics, National Tsing Hua University
Hsinchu, Taiwan 30043, Republic of China

(Submitted by: Klaus Schmitt)

Abstract

We study the bifurcation of the time map of positive solutions of the nonlinear two-point boundary value problem $u^{\prime \prime}+f(u)=0,-L<x<L, u(-L)=u(L)=0$ for $f(u)=-(u-a)(u-b)(u-c)$ satisfying $0 \leq a<b<c$ and $c>2 b-a$. Under one additional hypothesis on the cubic polynomial f, we are able to show that the time map not only has exactly one critical point, a minimum, but is also a strictly convex function by modifying a time map technique introduced by J. Smoller and A. Wasserman [1]. Combined with some results of J. Smoller and A. Wasserman [1] or of S.-H. Wang [2], our result implies that for some cubic polynomials $f(u)=-(u-a)(u-b)(u-c)$ with fixed numbers $0<a<b$, the time map has exactly one critical point, a minimum, for any number $c>2 b-a$. Our method can be generalized to general functions f with $f^{\prime \prime \prime}<0$.

1. Introduction. In this paper we study the bifurcation of the time map of positive solutions of the nonlinear two-point boundary value problem

$$
\begin{gather*}
u^{\prime \prime}+f(u)=0,-L<x<L \tag{1.1}\\
u(-L)=u(L)=0 \tag{1.2}
\end{gather*}
$$

where $2 L>0$, the interval length, is a real bifurcation parameter, and $f(u)$ is a cubic polynomial of the form

$$
\begin{equation*}
f(u)=-(u-a)(u-b)(u-c) \tag{1.3}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
0 \leq a<b<c \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
c>2 b-a \tag{1.5}
\end{equation*}
$$

that is, we assume that the cubic polynomial f has three distinct nonnegative real roots and $\int_{a}^{c} f(u) d u>0$. Thus there exists a unique γ with $b<\gamma<c$ satisfying

$$
\begin{equation*}
\int_{a}^{\gamma} f(u) d u=0 \tag{1.6}
\end{equation*}
$$

Received September 1992, in revised form May 1993.
AMS Subject Classifications: 34B15, 58F14.

