PERIODIC SOLUTIONS OF CERTAIN PLANAR RATIONAL ORDINARY DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

Tomasz Kaczynski \dagger
Département de mathématiques et d'informatique, Université de Sherbrooke Sherbrooke (Québec), Canada J1K 2R1
Roman Srzednicki \ddagger
Institute of Mathematics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland

(Submitted by: Jean Mawhin)

Abstract

Existence of periodic solutions is proved for systems of two differential equations of the form $\dot{x}=f(t, x, y), \dot{y}=g(t, x, y)$, where f and g are continuous functions T-periodic in t which are rational functions of $(x, y) \in \mathbb{R}^{2}$ with 0 as the only singularity, for each t, and satisfying some further assumptions. The proof is based on the study of Poincaré map in $\mathbb{R}^{2} \backslash\{0\}$ and on a modification of the Conley's concept of isolating block. Explicit examples are provided.

1. Introduction. We study first order semilinear differential equations whose right-hand sides are rational functions of $(x, y) \in \mathbb{R}^{2}$ with the origin as the only singularity and with time-dependent T-periodic coefficients. By using the complexnumber notation, one may express any such equation in the form

$$
\begin{equation*}
\dot{z}=\sum_{k, l \in \mathbb{Z}} b_{k, l}(t) z^{k} \bar{z}^{l} \tag{1.1}
\end{equation*}
$$

where the sum is finite, it may be extended over negative as well as positive integers, and $b_{k, l}$ are T-periodic continuous complex-valued functions. We may call such equations of Fourier-Laurent type, since for any function $f(t, x, y), T$-periodic in t, its finite expansion, Fourier in t and Laurent in (x, y), takes the form of the right-hand side of (1.1). We will assume that the lowest order terms (i.e., those corresponding to the minimum value of $k+l$) satisfy a so-called ellipticity condition and the highest order terms satisfy a so-called hyperbolicity condition.

Analogous equations of Fourier-Taylor type, i.e., when the right-hand side is a polynomial in z and \bar{z}, were studied in [18]. Let us note that if the sum in (1.1) extends over negative values of k and l only, then a change of variable $w=z^{-1}$ brings (1.1) to an equation of Fourier-Taylor type and results of [18] apply. We will therefore consider the cases where both positive and negative degree terms appear.

[^0]
[^0]: Received for publication March 1993.
 †Supported by a grant from NSERC of Canada.
 \ddagger Supported by the Polish scientific grant IM PB 658/2/91.
 AMS Subject Classifications: 34C25, 55M20.

