BIFURCATION PROPERTIES OF SEMILINEAR ELLIPTIC EQUATIONS IN \mathbb{R}^n

Adolfo J. Rumbos

Department of Mathematics, Pomona College, Claremont, CA 91711

ALLAN L. EDELSON

Department of Mathematics, University of California, Davis, CA 95616

(Submitted by: J.A. Goldstein)

Abstract. We study the bifurcation properties of the semilinear equation

$$\Delta u + \lambda f(x)(u + h(u)) = 0, \quad x \in \mathbf{R}^n,$$

where $h: \mathbf{R} \to \mathbf{R}$ is a bounded Hölder continuous function satisfying

$$\lim_{\xi \to 0+} \frac{h(\xi)}{\xi} \equiv a > 0,$$

and $f: \mathbf{R}^n \to \mathbf{R}$ is a positive asymptotically radial function satisfying $\int_{\mathbf{R}^n} f(x) \, dx < \infty$. We show the existence of a connected branch of positive solutions, u satisfying $|x|^{n-2}u(x) \to c > 0$ as $|x| \to \infty$. Such a branch bifurcates from infinity at λ_1 , where λ_1 is the principal eigenvalue of the linear equation $\Delta u + \lambda f(x)u = 0$, and from the trivial solutions at $\lambda_0 = \lambda_1/(1+a)$. We use the Leray-Schauder degree theory applied to the corresponding operator equations, and a global bifurcation result of Rabinowitz.

0. Introduction. Let $f \in C^{\alpha}_{loc}(\mathbf{R}^n, \mathbf{R})$ for some $0 < \alpha < 1$ and $n \ge 3$. Suppose there exist functions p and P, both in $C(\mathbf{R}^+, \mathbf{R}^+)$, with $0 < p(|x|) \le f(x) \le P(|x|)$ for all $x \in \mathbf{R}^n$, and

$$\int_{\mathbf{R}^n} |x|^{2-n} P(|x|) \, dx < \infty. \tag{1}$$

Let $h: \mathbf{R} \to \mathbf{R}^+$ be a bounded Hölder continuous function with exponent α satisfying h(0) = 0, and $\lim_{\xi \to 0+} \frac{h(\xi)}{\xi} \equiv a > 0$. In a recent paper [4] the authors have shown that if h is nondecreasing and a is large enough, there exists an interval of λ values for which the semilinear eigenvalue problem

$$\Delta u + \lambda f(x)(u + h(u)) = 0 \quad x \in \mathbf{R}^n$$
 (2)

has a bounded positive solution u satisfying $\lim_{|x|\to\infty}|x|^{n-2}u(x)=c>0$. In fact, if we let

$$l_1 = \frac{n-2}{\int_0^\infty \rho P(\rho) d\rho}$$
 and $l_2 = \frac{n-2}{\int_0^1 \rho^{n-1} p(\rho) d\rho}$,

Received for publication July 1992.

AMS Subject Classification: 35A05, 35D05, 35J65.