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Abstract. In this paper we prove that the only nonnegative solution to the Laplace equation 
.6.u=Ointhehalfspace{(xl,"' ,xn); Xl >O}subjecttotheboundarycondition ~~=uP 
on {x1 = 0} is the trivial solution u = 0 when pis subcritical, namely, 1 :=:; p < n~2 • This 
result is then used to obtain the blowup rate of a heat equation with the boundary condition 
au- uP an- · 

1. Introduction. Let us first consider the following heat equation with a 
nonlinear boundary condition: 

Ut = D.u for X E n, t > 0, 

ou = uP for X E an, t > o, on (1.1) 

u(x, 0) = Uo(x) for X En (uo(x) ~ 0). 

Throughout this paper, n denotes the exterior normal direction. It is known ([13], 
[14], [15]) that the solution for this problem will blow up in finite time, if u0 ( x) ¢. 0. 
In the one space dimensional case as well as a radial symmetric domain in IR.n, the 
blowup set and the blowup rate were obtained ([9], [3]) under certain assumptions 
on the initial data. 

For several space dimensions, the problem is much more challenging. Using the 
integral equation method, partial results were obtained in [16]. In our recent paper 
[11], the blowup rate is established, under the monotonicity assumption D.u0 (x) ~ 0 
and the restriction 1 < p < ~=~; some asymptotic behavior is also established. Let 
us also mention some other related work [4], [8] and [12]. 

The proof in [11] uses the nonexistence of a nontrivial nonnegative solution to 
the following elliptic problem: 

D.u = 0 in {(x1, ... , Xn)i X1 > 0}, 

8u P { } on = U on X1 = 0 . 
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