Differential and Integral Equations, Volume 7, Number 6, November 1994, pp. 1613-1624.

ON THE ASYMPTOTIC BEHAVIOR OF MINIMIZERS OF THE GINZBURG-LANDAU MODEL IN 2 DIMENSIONS

MICHAEL STRUWE

Mathematik, ETH-Zentrum, CH-8092 Zürich, Switzerland

Dedicated to the memory of Peter Hess

Abstract. Minimizers u_{ϵ} of the Ginzburg-Landau energy E_{ϵ} defined in (1) below on an arbitrary domain $\Omega \subset \mathbb{R}^2$ with smooth boundary and boundary data $g: \partial\Omega \to S^1$ as $\epsilon \to 0$ are shown to subconverge weakly in $H^{1,p}$ for p < 2 and locally in $H^{1,2}$ away from finitely many points x_1, \ldots, x_J to a smooth harmonic map $u: \Omega \setminus \{x_1, \ldots, x_J\} \to S^1$. The proof is based on simple comparison arguments. The result simplifies and extends previous work of Bethuel-Brezis-Hélein for the same problem on a star-shaped domain.

1. Introduction. Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary $\partial \Omega = \Gamma_1 \cup \cdots \cup \Gamma_K$, where $\Gamma_k \cong S^1$ for $1 \le k \le K$, and let $g = (g_1, \ldots, g_K)$ be smooth functions $g_k: \Gamma_k \to S^1 \subset \mathbb{C} \cong \mathbb{R}^2$, $1 \le k \le K$. Through the identification $\Gamma_k \cong S^1$ we may associate with each g_k a topological degree d_k .

Also let

$$H_g^1(\Omega) = \left\{ u \in H^{1,2}(\Omega; \mathbf{R}^2) : u_{|\mathbf{r}_k} = g_k, \ 1 \le k \le K \right\}.$$

It is well-known that $H_g^1(\Omega)$ is non-void. Moreover, for $\epsilon > 0$, $u \in H_g^1(\Omega)$ we define the Ginzburg-Landau energy

$$E_{\epsilon}(u) = E_{\epsilon}(u; \Omega) = \frac{1}{2} \int_{\Omega} \left\{ |\nabla u|^2 + \frac{1}{2\epsilon^2} \left(1 - |u|^2 \right)^2 \right\} dx.$$

$$\tag{1}$$

It is easy to see that for each $\epsilon > 0$ the infimum

$$\nu(\epsilon) = \inf_{u \in H^1_g} E_{\epsilon}(u)$$

is attained at a minimizer $u_{\epsilon} \in H_{g}^{1}$.

Received June 1993.

AMS Subject Classifications: 35B25, 35J20, 35J65, 58F20.