Differential and Integral Equations, Volume 7, Number 6, November 1994, pp. 1453-1471.

ON SOLUTION CONTINUA OF SUPERCRITICAL QUASILINEAR ELLIPTIC PROBLEMS

Jeff S. M^⁰Gough*

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

Dedicated to the memory of Peter Hess

Abstract. In this paper, we prove uniqueness of positive solutions (for certain values of the parameter λ) to quasilinear problems of the form div $\{g(x, \nabla u)\} + \lambda f(x, u) = 0$ with zero Dirichlet data on a bounded starlike domain in \mathbb{R}^n , $n \geq 3$. Here g is assumed to be a vector function whose norm grows subcritically in $|\nabla u|$. The function f grows supercritically in u.

1. Introduction. This paper is concerned with quasilinear elliptic problems of the form

$$\operatorname{div}\{g(x,\nabla u)\} + \lambda f(x,u) = 0, \quad x \in \Omega, \quad u = 0, \quad x \in \partial\Omega, \tag{1}$$

where the domain Ω is a bounded starlike set in \mathbb{R}^n , $n \geq 3$ with a smooth boundary: $\partial \Omega \in C^{2,\alpha}$. Problem (1) may arise as the steady state formulation of a related parabolic problem [2] or may arise directly from problems in differential geometry [3] and physics [5]. An important subclass of problems is obtained when $g_j(x, \nabla u) = \sum_i a_{ij}(x) \partial u / \partial x_i$; in this case, (1) is called a *semilinear* problem.

The function f(x, u) is assumed to be nonnegative and the partial derivative $f_u(x, u)$ is assumed to be strictly positive. A second growth assumption is placed on f, namely that f grows supercritically (defined below). Concerning g, it will be assumed that it grows subcritically (also defined below). Several good review articles are concerned with problems of this type [1, 17, 13].

A model problem for (1) is the Gelfand problem:

$$\Delta u + \lambda e^{u} = 0, \quad u \in \Omega, \quad u = 0, \quad u \in \partial \Omega.$$
(2)

This problem arises in combustion theory as the steady-state equation for a semilinear reaction-diffusion problem [2]. The main goal of this paper is to demonstrate that the essential solution continuum behavior found for the Gelfand problem when Ω is a ball can be found in solution continua of (1) where Ω is a starlike domain.

Received April 1993.

^{*}Supported in part by grant from NSF.

AMS Subject Classifications: 35J25, 35J60.