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Erratum

“On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions,”
by “Michael Struwe,” Differential and Integral Equations, Volume 7, Number 6 (1994),
1613-1624.

As stated, Proposition 3.4 may not be applied in the proof of Proposition 3.3 because

the assumption
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made in Proposition 3.4 has only been verified for R < 5¢'/%; see Lemma 3.1. The

correct statement of Proposition 3.4 is the following:
Proposition 3.4". Let ¢ < Ry < R < Ry and suppose 1 € H; satisfies || < 1 in Q,
|a(z)| > % in Ag R, and the estimates

1
> (1—|a?)de < K, (2)
€ JanB_1/4(0)

as well as
E.(i) < K|lne| + K. (3)
Then there holds
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where C = C(, g, K) and where d is the topological degree of @, restricted to d(€2 N
Bgr(0)) = St.

The proof of Proposition 3.4’ is almost identical to the proof of Proposition earlier.
We only need to modify the estimates for the error terms Iy and
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We may assume R > €'/%. Then we split
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and estimate s < d?(7K)'/2 as before, while by Cauchy-Schwarz
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Similarly,
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and the proof may be completed as before.
By a different method, it is possible to prove that, in fact, assumption (1) is satisfied
for all R and that Proposition 3.4 can be applied in its original form. The simple
argument given above was suggested to me by M.-C. Hong.
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