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Erratum

“On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions,”
by “Michael Struwe,” Di↵erential and Integral Equations, Volume 7, Number 6 (1994),
1613–1624.

As stated, Proposition 3.4 may not be applied in the proof of Proposition 3.3 because
the assumption
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made in Proposition 3.4 has only been verified for R  5✏1/4; see Lemma 3.1. The
correct statement of Proposition 3.4 is the following:

Proposition 3.40. Let ✏ < R0 < R  R1 and suppose û 2 H1
g satisfies |û|  1 in ⌦,

|û(x)| � 1
2 in AR,R0 and the estimates
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as well as
E✏(û)  K| ln ✏| + K. (3)

Then there holds Z
AR,R0

|rû|2dx � 2⇡d̂2 ln( R
R0

)� Cd̂2,

where C = C(⌦, g,K) and where d̂ is the topological degree of û, restricted to @(⌦ \
BR(0)) ⇠= S1.

The proof of Proposition 3.40 is almost identical to the proof of Proposition earlier.
We only need to modify the estimates for the error terms I2 and
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We may assume R � ✏1/4. Then we split
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and estimate I6  d̂2(⇡K)1/2 as before, while by Cauchy-Schwarz
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and the proof may be completed as before.
By a di↵erent method, it is possible to prove that, in fact, assumption (1) is satisfied

for all R and that Proposition 3.4 can be applied in its original form. The simple
argument given above was suggested to me by M.-C. Hong.
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