A KORN'S INEQUALITY FOR FUNCTIONS WITH DEFORMATION IN L ${ }^{1}\left(\mathbb{R}^{2}\right)$ AND L ${ }^{1}\left(B^{2}, S^{1}\right)$

Françoise Demengel
Département de Mathématiques, Université de Cergy Pontoise and Laboratoire d'Analyse Numérique, Université de Paris-Sud Orsay

(Submitted by: Roger Temam)

1. Introduction. The aim of this paper is to prove that some kind of Korn's inequality, which is false in the space $L D\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$, whose definition is recalled below, can be true for functions defined on the two-dimensional unit ball B^{2}, with values in a one dimensional variety. More precisely we shall prove here that if $u \in L^{1}\left(B^{2}, S^{1}\right)$ (B^{2} is the unit ball of \mathbb{R}^{2} and S^{1} is the one dimensional sphere), and if u has its symmetric derivatives in $L^{1},\left(\varepsilon_{11}(u)=u_{1,1}, \varepsilon_{22}(u)=u_{2,2}, \varepsilon_{12}(u)=\left(u_{1,2}+u_{2,1}\right) / 2\right)$. Then u is in fact in $W^{1,1}$ and the following equality holds true, almost everywhere

$$
\begin{equation*}
|\nabla u|^{2}(x)=4\left(\varepsilon_{12}(u)\right)^{2}(x)+\left(\varepsilon_{22}-\varepsilon_{11}\right)^{2}(u)(x) \tag{1.1}
\end{equation*}
$$

Let us recall first a few facts about the space $L D\left(\Omega, \mathbb{R}^{k}\right)$ and about Korn's inequality in $W^{1, p}$ for $1<p<\infty$.

Let Ω be a bounded open set of \mathbb{R}^{N} whose boundary is Lipschitzian; the space of functions with deformations in L^{1} is defined as (cf. [15], [16]):

$$
\begin{equation*}
L D\left(\Omega, \mathbb{R}^{N}\right)=\left\{u \in L^{1}\left(\Omega, \mathbb{R}^{N}\right), \varepsilon_{i j}(u)=\frac{u_{i, j}+u_{j, i}}{2} \in L^{1}, \forall(i, j) \in[1, N]^{2}\right\} \tag{1.2}
\end{equation*}
$$

It is not difficult to see that

1) $L D$ is a Banach space for the norm

$$
|u|_{1}+\sum_{1 \leq i, j \leq N}\left|\varepsilon_{i j}(u)\right|_{1},
$$

where $|\cdot|_{1}$ denotes the L^{1} norm on Ω.
2) By a classical regularization process, one can prove that $\mathcal{C}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ is dense in $L D\left(\Omega, \mathbb{R}^{N}\right)$ for the norm defined in 1$)$.
3) On every \mathcal{C}^{1}-submanifold Σ of dimension $N-1$, the trace of u on Σ is well defined, and belongs to $L^{1}(\Sigma)$. Moreover, the trace map is continuous and possesses a continuous inverse.
4) Korn's inequality is not true in $W^{1,1}$: in other words, this means that there exist functions which have deformation in L^{1}, such that ∇u does not belong to L^{1}. This may be proved by using a construction of D. Ornstein [13], which exhibited a sequence u_{n} of non trivial functions in $\mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ such that

$$
\int_{\mathbb{R}^{N}}\left|u_{n, 12}\right| \geq n\left\{\int_{\mathbb{R}^{N}}\left(\left|u_{n, 11}\right|+\left|u_{n, 22}\right|\right)\right\}
$$

[^0]AMS Subject Classifications: 35Q.

[^0]: Received January 1993.

