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1. Introduction. In the study of spatial patterns, bistable systems play an
important role. A typical example, which has been extensively studied in the context
of population dynamics [1, 6, 9], leads to the equation
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=
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+ (u� a)(1� u2), �1 < a < 1, (1.1)

which is sometimes referred to as the Fisher-Kolmogorov or FK equation, or the
Nagumo equation. In this context equation (1.1) describes the interaction between
dispersal, modeled by the di↵usion term, and survival fitness, represented by the
function

f(u) = (u� a)(1� u2), �1 < a < 1.

The two stable uniform states u = ±1 are separated by the unstable state u = a.
If a = 0 equation (1.1) admits a stationary monotone transition layer solution
connecting u = �1 and u = +1, which is unique, except for translations and given
by

u(x) = tanh
� xp

2
�
.

If a 6= 0 then (1.1) admits monotone travelling wave solutions connecting u = �1
and u = +1.

Recently, interest has turned to a higher order extension of the FK-equation –
the EFK equation – of the form
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+ (u� a)(1� u2), �1 < a < 1, � > 0. (1.2)

The motivation for studying this equation has come in part from the fact that in
phase transitions it describes the dynamics near a critical point where the coe�cient
of |ru|2 in the Landau free energy functional vanishes and the lowest order spatial
derivatives that appear are of second order (a Lifshitz point) [8, 12]. However, like
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