SPATIAL PATTERNS DESCRIBED BY THE EXTENDED FISHER-KOLMOGOROV (EFK) EQUATION: KINKS

L.A. Peletier

Mathematical Institute, Leiden University, Leiden, Netherlands

W.C. TROY

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

1. Introduction. In the study of spatial patterns, bistable systems play an important role. A typical example, which has been extensively studied in the context of population dynamics [1, 6, 9], leads to the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + (u-a)(1-u^2), \qquad -1 < a < 1, \tag{1.1}$$

which is sometimes referred to as the Fisher-Kolmogorov or FK equation, or the Nagumo equation. In this context equation (1.1) describes the interaction between dispersal, modeled by the diffusion term, and survival fitness, represented by the function

$$f(u) = (u - a)(1 - u^2), \quad -1 < a < 1.$$

The two stable uniform states $u = \pm 1$ are separated by the unstable state u = a. If a = 0 equation (1.1) admits a stationary monotone transition layer solution connecting u = -1 and u = +1, which is unique, except for translations and given by

$$u(x) = \tanh\left(\frac{x}{\sqrt{2}}\right).$$

If $a \neq 0$ then (1.1) admits monotone travelling wave solutions connecting u = -1and u = +1.

Recently, interest has turned to a higher order extension of the FK-equation – the EFK equation – of the form

$$\frac{\partial u}{\partial t} = -\gamma \frac{\partial^4 u}{\partial x^4} + \frac{\partial^2 u}{\partial x^2} + (u-a)(1-u^2), \quad -1 < a < 1, \ \gamma > 0.$$
(1.2)

The motivation for studying this equation has come in part from the fact that in phase transitions it describes the dynamics near a critical point where the coefficient of $|\nabla u|^2$ in the Landau free energy functional vanishes and the lowest order spatial derivatives that appear are of second order (a Lifshitz point) [8, 12]. However, like

Received for publication May 1994.

This work was reported on at the International Conference on Differential Equations in August, 1993.

AMS Subject Classifications: 34C15, 34C25, 35Q35.