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1. Introduction. In this paper we show that viscosity solutions to curvature evolu-
tion equations may be obtained as limits of minimizers for �-limits of inhomogeneous,
anisotropic singular perturbations for certain nonconvex variational problems. We con-
sider the energy

I(u) :=
Z

⌦
W (u(x)) dx,

where ⌦ is an open, bounded, strongly Lipschitz domain of RN , u : ⌦ ! Rn, and W
supports two phases; i.e., W has two isolated (global) minimum points a and b. The
minimization of the energy E(·) subject to fixed volume fraction ✓, 0 < ✓ < 1, admits
infinitely many solutions, which are piecewise constant measurable functions of the form
u = �Aa + (1� �A)b, with meas(A) = ✓ meas(⌦). In order to find a selection criterion
for resolving this nonuniqueness, we fix an initial phase-a configuration, A0, and we
introduce the family of perturbed problems

Ih
✏ (u) :=

Z
⌦

W (u(x)) dx +
Z

⌦
✏2⇤2(x,ru(x)) dx +

Z
⌦
✏fh(x, u(x);A0) dx,

where ✏, h > 0, @⇤A0 is the reduced boundary of A0 (see Section 2) and ⇤(x, ·) has
linear growth. A particularly interesting example of the last contribution to the total
energy is given by the density

fh(x, u;A0) := |u� �A0(x)a� (1� �A0(x))b|pg
�d(x, @⇤A0)

h

�
, (1.1)

where d(x, @⇤A0) denotes the signed distance from x to @⇤A0.
In order to study the behavior of minimizing sequences, we rescale the energy to

obtain

Eh
✏ (u;A0) :=

Z
⌦

1
✏
W (u(x)) dx + ✏

Z
⌦
⇤2(x,ru(x)) dx +

Z
⌦

fh(x, u(x);A0) dx.
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