NON-EXISTENCE OF POSITIVE SOLUTIONS OF LANE-EMDEN SYSTEMS

James Serrin
School of Mathematics, University of Minnesota, Minneapolis, MN 55455
Henghui Zou*
Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294

1. Introduction. In this paper we consider (component-wise) positive solutions of the weakly coupled system

$$
\begin{align*}
& \Delta u+v^{p}=0, \\
& \Delta v+u^{q}=0, \tag{I}
\end{align*} \quad x \in \mathbb{R}^{n},
$$

where $p, q>0$ and $n \geq 3$ is the dimension of the space, and are concerned with the question of non-existence of such solutions. This system arises in chemical, biological and physical studies, and has been investigated by several authors, see for example [3, 8, 9] and references therein.

The system (I) is a natural extension of the celebrated Lane-Emden equation, and we thus refer to it as the Lane-Emden system. The Lane-Emden equation

$$
\begin{equation*}
\Delta u+u^{p}=0, \quad x \in \mathbb{R}^{n}, n>2, p>1 \tag{II}
\end{equation*}
$$

has been extensively studied, going back to the pioneering work of Fowler (cf. [4], and the recent paper [12]). It is well-known that the Sobolev exponent

$$
l=\frac{n+2}{n-2}
$$

serves as the dividing number for existence and non-existence of solutions of (II), that is, equation (II) admits non-negative, non-trivial solutions if and only if $p \geq l$, see [4] and [5].

It is natural to ask if there exists a corresponding dividing curve in the $p q$-plane for the Lane-Emden system, that is, a curve with the property that (I) admits positive solutions if and only if (p, q) is on or above the curve.

Mitidieri [9] showed that (I) does not have any positive radial solutions if

$$
\frac{1}{p+1}+\frac{1}{q+1}>\frac{n-2}{n}, \quad p, q>1
$$

[^0]
[^0]: Received for publication February 1996.
 *Research supported in part by NSF grant DMS-9418779, by a grant from Alabama EPSCoR and a faculty research grant from University of Alabama at Birmingham, Birmingham.

 AMS Subject Classifications: 35J60, 35B40.

