Differential and Integral Equations

PARABOLIC VARIATIONAL INEQUALITIES WITH SINGULAR INPUTS

VIOREL BARBU AND AUREL RĂȘCANU

Department of Mathematics, "Al.I.Cuza" University, 6600 Iași, Romania

1. Introduction. This work is concerned with abstract parabolic variational inequalities of the form

$$dy(t) + Ay(t)dt + \partial\varphi(y(t))dt \ni f(t)dt + dM(t), \quad t \in [0, T],$$

$$y(0) = y_0,$$

(1.1)

in a real Hilbert space H, where A is a linear self-adjoint operator, $\partial \varphi$ is the subdifferential of a convex lower semicontinuous function $\varphi : H \to \overline{\mathbb{R}}$ and M is a continuous function from [0, T] to H or to a smaller space.

Equation (1.1) is considered in the weak sense

$$y(t) + \int_0^t Ay(s) \, ds + \eta(t) = y_0 + \int_0^t f(s) \, ds + M(t), \quad \forall t \in [0, T], \tag{1.2}$$

where η is a function with bounded variation on [0, T] such that

$$d\eta(t) \in \partial \varphi(y(t))dt$$

in some weak sense.

The first motivation to study such a problem comes from the classical Skorohod problem:

Given $M \in C([0,T]; \mathbb{R}^d)$, M(0) = 0 and $x \in D \subset \mathbb{R}^d$, D a convex set, find $y \in C([0,T]; \mathbb{R}^d)$ and $\eta \in C([0,T]; \mathbb{R}^d) \cap BV([0,T]; \mathbb{R}^d)$, $\eta(0) = 0$ such that

$$y(t) + \eta(t) = x + M(t), \quad \forall t \in [0, T],$$
 (1.3)

$$\int_{0}^{T} 1_{\text{int } D}(y(s)) \, d[\eta]_{s} = 0, \tag{1.4}$$

$$\eta(t) = \int_0^t n_s \, d[\eta]_s, \quad \forall t \in [0, T],$$
(1.5)

Received for publication January 1996.

AMS Subject Classifications: 35B25, 47H15, 35K85.