NONEXISTENCE OF PERIODIC SOLUTIONS OF A COMPLEX RICCATI EQUATION ${ }^{1}$

Juan Campos and Rafael Ortega
Departamento de Matematica Aplicada, Universidad de Granada, 18071 Granada, Spain

(Submitted by: Jean Mawhin)

In this note we construct an example of a complex-valued differential equation of the kind

$$
\begin{equation*}
z^{\prime}=z^{2}+p(t) \tag{1}
\end{equation*}
$$

with $p: \mathbb{R} \rightarrow \mathbb{C}$ smooth and 2π-periodic, and such that (1) has not 2π-periodic solutions.

The problem of existence or nonexistence of periodic solutions for equation (1) has been recently posed by J. Mawhin in [3] and it is this question that motivates our paper. Other related references are [1], [2]. The construction of $p(t)$ will follow after two lemmas. They will be proved later.

Lemma 1. Let $z(t)$ be the solution of the initial value problem

$$
\begin{equation*}
z^{\prime}=z^{2}+1, \quad z(0)=z_{0}, \quad\left(z_{0} \in \mathbb{C}\right) \tag{2}
\end{equation*}
$$

Then,
i) If $z_{0} \in \mathbb{R}, z(t)$ is not defined in $[0, \pi]$.
ii) If $z_{0} \in \mathbb{C}-\mathbb{R}, z(t)$ is π-periodic.

Lemma 2. There exists a function $s: \mathbb{R} \rightarrow \mathbb{R}$ that is of class C^{∞}, π-periodic and satisfies

$$
s(0)=1, \quad s^{(n)}(0)=0, \quad n=1,2, \ldots
$$

and such that the equation

$$
\begin{equation*}
z^{\prime}=z^{2}+s(t) \tag{3}
\end{equation*}
$$

has only real π-periodic solutions; that is, every π-periodic solution of (3) satisfies $z(t) \in \mathbb{R}, \forall t \in \mathbb{R}$.

Remark. If $z(t)$ is a solution of (3) with $z\left(t_{0}\right) \in \mathbb{R}$, for some t_{0}, then $z(t)$ is a real solution.

[^0]
[^0]: Received for publication November 1994.
 ${ }^{1}$ Supported by DGCYT PB92-0953, M.E.C., Spain
 AMS Subject Classifications: 34B15, 34C25.

