Differential and Integral Equations

Volume 10, Number 5, September 1997, pp. 797-814.

MULTIPLE SOLUTIONS OF NONHOMOGENEOUS ELLIPTIC EQUATION WITH CRITICAL NONLINEARITY

DAOMIN CAO*

Young Scientist Laboratory of Mathematical Physics Wuhan Institute of Mathematical Sciences The Chinese Academy of Science, PO Box 71007, Wuhan 430071, P.R. China

J. CHABROWSKI

The University of Queensland, Department of Mathematics, St. Lucia 4072, Queensland, Australia

(Submitted by: Klaus Schmitt)

1. Introduction. The main purpose of this work is to investigate the existence of multiple positive solutions of the following problem:

$$\begin{cases} -\Delta u = Q(x)|u|^{p-2}u + \epsilon h(x) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega, \end{cases}$$
(1_n)

where Ω is a bounded smooth domain in \mathbb{R}^N $(N \ge 3)$, $p = \frac{2N}{N-2}$ is a critical Sobolev exponent, $h \in L^2(\Omega)$, with $h \ge 0$, $\neq 0$ on Ω , $Q \in C(\overline{\Omega})$ is positive and $\epsilon > 0$ is a parameter.

In recent years several authors have studied problems of this nature (see for example [3], [4], [16], [14], [15]. In particular, in the case where $Q(x) \equiv 1$ on Ω , Tarantello ([17]) proved the existence of at least two positive distinct solutions for $\epsilon > 0$ small. This result has been extended by Rey ([16]) who proved that problem (1_n) has at least cat $\Omega + 1$ positive distinct solutions for $\epsilon > 0$ small.

In this paper we are concerned with the effect of the shape of the graph of Q on the number of positive solutions. Throughout this paper we assume the hypothesis

(Q) $Q \in C(\Omega), Q > 0$ on Ω and there exist points $a_1, \ldots, a_k \in \Omega$ where Q takes on strict local maxima; i.e., $Q(a_j) = \max_{x \in \Omega} Q(x)$ and $Q(x) < Q(a_j)$ for x in a neighbourhood U_j of $a_j, j = 1, \ldots, k$, and moreover for $x \in U_j$

$$Q(x) - Q(a_j) = o(|x - a_j|^{\frac{N-2}{2}}).$$

In what follows we use the notation $Q_M = \max_{x \in \Omega} Q(x)$. The main results of this paper are the following:

Received for publication December 1996.

^{*}Research partially supported by C.G. project of Wuhan and NSFC.

AMS Subject Classifications: 35J65.