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1. Introduction

In this paper, we study the existence of nontrivial solutions of quasilinear
elliptic equations of the form

−div(a(|∇u|)∇u) = g(x, u) in Ω (1.1)

with boundary condition
u = 0 on ∂Ω, (1.2)

in the case where the function a(t)t has very slow growth. Here, g(x, u) is
the lower order term and the function

φ : t �→ a(t)t, t ∈ R,

represents the principal (higher order) part of the equation. We assume that
φ is an increasing, continuous, odd function vanishing at 0 and put

Φ(t) =
∫ t

0
φ(s)ds (t ∈ R).

The classical case Φ(t) = t2 corresponds to the semilinear Laplace equation.
When Φ(t) = tp (p > 1), we have what is called a p-Laplacian equation. A
growing literature is devoted to this case. The next natural step is to study
(1.1)–(1.2) in the case where Φ is a Young function. This is the problem
we are interested in here. If g(x, 0) = 0 then 0 is always a trivial solution
of (1.1)–(1.2). We are here with the existence of nontrivial ones. For this
purpose, we shall use a version of the Mountain Pass Theorem. However,
we are interested here in the case where Φ is growing very slowly, that is,
Φ(t) = o(tp) as t → ∞ for all p > 1. Three issues arise:
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