Differential and Integral Equations

Volume 15, Number 7, July 2002, Pages 839-862

## NONTRIVIAL SOLUTIONS OF MOUNTAIN PASS TYPE OF QUASILINEAR EQUATIONS WITH SLOWLY GROWING PRINCIPAL PARTS

VY KHOI LE

Department of Mathematics and Statistics, University of Missouri–Rolla Rolla, MO 65409

(Submitted by: Klaus Schmitt)

## 1. INTRODUCTION

In this paper, we study the existence of nontrivial solutions of quasilinear elliptic equations of the form

$$-\operatorname{div}(a(|\nabla u|)\nabla u) = g(x, u) \text{ in } \Omega$$

$$(1.1)$$

with boundary condition

$$u = 0 \quad \text{on } \partial\Omega, \tag{1.2}$$

in the case where the function a(t)t has very slow growth. Here, g(x, u) is the lower order term and the function

$$\phi: t \mapsto a(t)t, \ t \in \mathbf{R},$$

represents the principal (higher order) part of the equation. We assume that  $\phi$  is an increasing, continuous, odd function vanishing at 0 and put

$$\Phi(t) = \int_0^t \phi(s) ds \ (t \in \mathbf{R}).$$

The classical case  $\Phi(t) = t^2$  corresponds to the semilinear Laplace equation. When  $\Phi(t) = t^p$  (p > 1), we have what is called a *p*-Laplacian equation. A growing literature is devoted to this case. The next natural step is to study (1.1)-(1.2) in the case where  $\Phi$  is a Young function. This is the problem we are interested in here. If g(x,0) = 0 then 0 is always a trivial solution of (1.1)-(1.2). We are here with the existence of nontrivial ones. For this purpose, we shall use a version of the Mountain Pass Theorem. However, we are interested here in the case where  $\Phi$  is growing very slowly, that is,  $\Phi(t) = o(t^p)$  as  $t \to \infty$  for all p > 1. Three issues arise:

Accepted for publication: June 2001.

AMS Subject Classifications: 35J85, 35J20, 49J40, 49J35.