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If P (η) is a real homogeneous polynomial one associates real and complex
algebraic varieties

VR :=
{
η ∈ Rn \0 : P (η) = 0

}
and VC :=

{
η ∈ Cn \0 : P (η) = 0

}
,

with VR ⊂ VC.
Definition. A homogeneous polynomial is hyperbolic with timelike direc-
tion θ ∈ Rn \ 0 if and only if for all real η the equation P (η + sθ) = 0 has
only real roots s (see [5], [4]).

In the trivial case of P being a constant, both varieties are empty. Taking
η = 0 shows that P (θ) �= 0.

If P is of degree m ≥ 1, then for each η ∈ Rn, the equation P (η +
sθ) = 0 has m real roots counting multiplicity, so the line η + sθ cuts the
varieties V in at least 1 and no more than m points. It follows that VR

(respectively VC) is a real algebraic variety (respectively algebraic variety)
of real (respectively complex) codimension equal to one. VR is called the
characteristic variety.

The fundamental stratification theorems of real and complex algebraic
geometry (see [1], [3]) imply that with the exception of a set of real or
complex codimension 2, the varieties VR and VC are locally real analytic
and analytic. That means on a neighborhood of a nonexceptional point η
there is a real analytic function (respectively analytic function) φ(η) with
φ(η) = 0 and dφ(η) �= 0 whose zero set coincides with the variety. The
nonexceptional points are called regular according to the next definition.
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