Differential and Integral Equations

GLOBAL ASYMPTOTIC STABILITY FOR FINITE-CROSS-SECTION PLANAR SHOCK PROFILES OF VISCOUS SCALAR CONSERVATION LAWS

S. KAMIN AND S. SCHOCHET School of Mathematical Sciences, Tel-Aviv University

(Submitted by: L.A. Peletier)

1. INTRODUCTION

We consider a possibly multidimensional viscous scalar conservation law

$$u_t + \sum_{j=1}^d f_j(u)_{x_j} = \Delta u$$
 (1.1)

for $(t, x) = (t, x_1, y) \in (0, \infty) \times \mathbb{R} \times \Omega_{d-1}$, where Ω_{d-1} is a smooth, bounded domain in \mathbb{R}^{d-1} , whose volume will be denoted $vol\Omega_{d-1}$. A planar shock profile for (1.1) is a solution ψ of that equation that depends only on the combination $x_1 - st$ for some constant s, and tends to distinct finite values u_{\pm} as $x_1 \to \pm \infty$. That is,

$$-s\psi' + f_1(\psi)' = \psi'', \quad \lim_{x_1 \to \pm \infty} \psi(x_1) = u_{\pm}.$$
 (1.2)

Note that if $\psi(x_1)$ satisfies (1.2) then so does the translate $\psi(x_1 - \delta)$ for any real δ .

As is well-known (e.g. [9]), integrating (1.2) shows that s, u_{\pm} , and f_1 must satisfy the Rankine-Hugoniot condition

$$s = \frac{f_1(u_+) - f_1(u_-)}{u_+ - u_-} \tag{1.3}$$

and the entropy condition

$$sgn(u_{+} - u_{-})\left\{ \left[f_{1}(u) - su \right] - \left[f_{1}(u_{\pm}) - su_{\pm} \right] \right\} > 0$$
 (1.4)

for all u between u_+ and u_- . The Rankine-Hugoniot condition (1.3) implies that the same condition is obtained for both choices of the sign \pm in (1.4). It is also well-known that taking the limit of (1.4) as $u \to u_{\pm}$ shows that

Accepted for publication: February 2004.

AMS Subject Classifications: 35L67, 35B35.