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1. Introduction

A mathematical model for the transverse deflection of an extensible beam
whose ends are held at fixed distance apart is
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which has been proposed by Woinowsky and Krieger [20]. Here k, α > 0 are
constants, ρ ∈ R, and the nonlinear term represents the change in tension
of the beam due to its extensibility. The model has also been discussed by
Eisley [8], Dickey [7], and Ball [1]–[2], while related experimental results have
been given by Burgreen [6].

Nonlinear beams have been the subject of much recent activity. Ball uses
a Galerkin method to obtain weak solutions to (1.1) and obtains classical
solutions by placing further restrictions on the regularity of the data. The
abstract formulation of (1.1)–(1.2) is the equation
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Au = 0, (1.3)

where A is a positive self-adjoint operator in a Hilbert space H and M is a
real function. This model has been studied by Medeiros [16]. He supposed
that M ∈ C1[0,∞) be such that M(λ) ≥ m0 + m1λ, for any λ;m0, m1 > 0,
and with A having compact resolvent. The same equation (1.3), but with a
dissipative term, was studied by Brito [4]–[5], Pereira [17], and Holmes and
Marsden [15].
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