POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL p-LAPLACIAN*

R. Manásevich

Departamento de Ingeniería Matemática F.C.F.M. Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile

F.I. NJOKU

Department of Mathematics, University of Nigeria, Nsukka, Nigeria

F. Zanolin

Dipartimento di Matematica e Informatica, Università, Via Zanon 6, 33100 Udine, Italy

(Submitted by: A.R. Aftabizadeh)

Introduction. In this work, we are concerned with the existence of positive solutions for the nonlinear two-point boundary value problem

$$(\phi_p(u'))' + f(t, u) = 0, \qquad u(a) = 0 = u(b),$$
 (P_p)

where $'=\frac{d}{dt}$, $\phi_p(s):=|s|^{p-2}s$ and $(\phi_p(u'))'$ is the one-dimensional p-Laplacian, p>1. Throughout the paper $\mathbb{R}_+:=[0,+\infty)$, and $f:[a,b]\times\mathbb{R}_+\to\mathbb{R}$ is Caratheodory, that is, $f(\cdot,s)$ is measurable for all $s\in\mathbb{R}_+$, $f(t,\cdot)$ is continuous for almost every $t\in[a,b]$ and for every $t\in[a,b]$. We suppose also that $|f(t,s)|\leq \eta_r(t)$, for all $s\in[0,r]$ and almost every $t\in[a,b]$. We suppose also that $f(t,0)\equiv 0$.

By a solution to (P_p) we mean a function $u:[a,b]\to \mathbb{R}_+$, of class C^1 , with $\phi_p(u')$ absolutely continuous, satisfying (P_p) . A solution u is positive if u(t)>0 for all $t\in(a,b)$.

In a recent paper, Kaper, Knapp and Kwong [9, Theorem 2], proved the existence of at least one positive solution to (P_p) by assuming f continuous and satisfying

$$\lim_{u \to 0^+} \frac{f(t, u)}{\phi_p(u)} = l \le 0, \quad \text{and} \quad \lim_{u \to +\infty} \frac{f(t, u)}{\phi_p(u)} = +\infty,$$

where the limits are supposed to hold uniformly with respect to $t \in (a, b)$. Condition (k_1) is related to previous works concerning the existence of positive solutions for nonlinear elliptic problems where the differential operator is linear, that is, p = 2. Indeed, we recall from [6, Theorem 2.1] that for f = f(u), the Dirichlet problem

$$\Delta u + f(u) = 0, \qquad u_{\text{lag}} = 0 \tag{D}$$

has at least one positive solution if

$$f(0) = 0$$
 and $f(u) \ge 0$ for all $u \in \mathbb{R}_+$ (1.1)

Received Feburary 1992, in revised form October 1993.

^{*}This research was sponsored by FONDECYT-1209-91, by the EC for RM and FZ, and by MURST 60% (1990), Univ. of Udine for FZ.

AMS Subject Classification: 34B15.