## REMARKS ON THE DAMPED STATIONARY EULER EQUATIONS

## JEAN-CLAUDE SAUT

Université Paris XII and Laboratoire d'Analyse Numérique C.N.R.S. et Université Paris-Sud, Bât. 425, 91405 Orsay, France

(Submitted by: Roger Temam)

**Abstract.** We consider the Charney-Stommel model of the Gulf-Stream, taking into account the Coriolis force and the friction due to the bottom of the ocean. It reduces to a damped version of the stationary Euler equations in space dimension 2. We prove the existence of weak solutions for any body force in  $H^1$ , and the existence, uniqueness and stability of smooth solutions when the force is small relative to the damping.

Introduction. This paper<sup>1</sup> is concerned with a system arising in the theory of ocean circulation. The system under study is due to Stommel [15] and Charney [5] (see also the book of Pedlosky [12]). It is a model of the Gulf-Stream taking into account the Coriolis force (the so-called  $\beta$ -effect) and the friction due to the bottom of the ocean. Mathematically, it reduces to a boundary value problem for the damped stationary Euler equations of incompressible fluids. More precisely, let  $\Omega$  be a bounded simply connected domain of  $\mathbb{R}^2$  with smooth boundary  $\Gamma$ . We are looking for a vector field  $u = (u_1, u_2)$  and a scalar pressure p which satisfy the system

$$\begin{cases}
\epsilon u + R(u.\nabla)u + \nabla p + \varphi = f & \text{in } \Omega \\
\operatorname{div} u = 0 & \text{in } \Omega \\
u.n|_{\Gamma} = 0.
\end{cases}$$
(0.1)

Here  $\epsilon > 0$  and  $R \ge 0$  are given and arise as a result of the nondimensionalization of the various fields; f is a driving force due to the applied surface wind stress; the term  $\varphi$  is due to the Coriolis force and plays to no major mathematical role in our analysis. It is related to u by

$$\underline{curl}\,\varphi = u_2. \tag{0.2}$$

We will determine it uniquely by imposing

$$div \varphi = 0 \quad \varphi . n|_{\Gamma} = 0 \tag{0.3}$$

Received October 11, 1989.

AMS Subject Classifications: 35Q20, 35B35, 76C05.

<sup>&</sup>lt;sup>1</sup>Part of this work was done while the Author enjoyed the hospitality of the Tata Institute of Fundamental Research, Bangalore.