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1. Introduction. The purpose of this paper is to study a class of delay differ
ential equations (DDE) of the form 

x(t) = -Ax(t) + bA~"x(t- h)+ [oh a(s)Avx(t + s) ds, fort> 0 

x(O) = ¢0 , x(s) = ¢1 (s) a.e. on (-h,O), 

(1.1) 

where -A is the infinitesimal generator of an analytic semigroup on a Hilbert space 
X, A~" and Av, 0 :$ f.L, v < 1 are fractional powers of A and b and a( s) are 
scalar valued. Equations of this type were considered by several authors. Travis 
and Webb in [26], [27] treated (1.1) in the state space of continuous functions 
C( -h, 0; X<>), where a = max(f.L, v) and xa denotes the domain of A<> endowed 
with the graph norm. In this case ¢1 E C( -h, 0; X<>) and ¢0 = (pl(O). The case 
where all operators acting on the delayed part of the equation are bounded has 
been treated by several authors; see [25], for example. Kunisch and Schappacher 
in [KS] presented necessary conditions for DDE to generate a C0-semigroup in the 
product space X x V( -h, 0; X). The case where f.L = v = 1 is admitted in (1.1) 
has been considered in [1], [2], [6], [7], [8], for example. In [7], [8], DiBlasio, Kunisch 
and Sinestrari developed a state space theory in Y x £ 2 ( -h, 0; D(A) ), where Y is a 
real interpolation space between D(A) and X and D(A) denotes the domain of A 
endowed with the graph norm. Milota in [17] studied stability of DDE (1.1) with 
0 :S f.L, v < 1 and h = oo. The first aim of this paper is to study wellposedness 
in a semigroup theoretic framework of DDE of the type (1.1) in the product space 
xf3 X £ 2 ( -h, 0; X<>), where (3 is chosen in dependence of f.L and v. 

Bernier, Delfour and Manitius in their study of DDE in IRn have shown that the 
so-called structural operator can be employed to describe concisely the influence of 
the delay part in (1.1) on the evolution of the trajectories. The structural operator 
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