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1. Introduction. In this paper we treat nonlinear dispersive systems of the 
form 

Ut -l:J.ut = div f(u), (x, t) E f! X (0, oo), (1.1) 

subject to the Dirichlet boundary condition 

u = 0, (x, t) E of! X (0, oo), (1.2) 

and the initial condition 
u(x, 0) = uo(x), X E f!, (1.3) 

where n is a bounded or unbounded smooth domain in IRn, n :2: 1, and f is a 
nonlinear vector valued function f(u) = (ft(u), ... , fn(u)) of the class C 2 (1R, IRn) 
satisfying the normalization condition f(O) = 0. 

Benjamin, Bona, and Mahony [3] formulated the equation of the form 

u2 
Ut + (u+ 2)x- Uxxt = 0, (x,t) E IR X (0, oo) (1.4) 

which models long waves with small amplitude. This equation is understood to be 
a substitute model for the Korteweg-de Vries equation. The existence, uniqueness 
and regularity of the solutions of equation (1.4) were investigated under various 
conditions by a number of authors. For the related results we refer for instance 
to [7], [8] and their references. In fact, Oharu and Takahashi treated the problem 
(1.1)-(1.3) in the case of one space dimension in [7]. 

Equation (1.1) is not only a natural extension of the Benjamin-Bona-Mahony 
equation to the cases of higher space dimensions, but also it can be regarded as a 
pseudo-parabolic regularization of the single conservation law 

Ut- div f(u) = 0. (1.5) 
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