Differential and Integral Equations, Volume 1, Number 2, April 1988, pp. 223-230

BOUNDED AND PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECT IN A BANACH SPACE

D.D. BAINOV

P.O. Box 45, 1504 Sofia, Bulgaria

S.I. KOSTADINOV Plovdiv University, Paissii Hilendarski, Plovdiv

A.D. Myshkis

Moscow Institute of Railway, Transport Engineers, Moscow, USSR

Abstract. Sufficient conditions are obtained for the existence of bounded and periodic solutions of linear and weakly non-linear differential equations with impulse effect in a Banach space on the axis or the semi-axis. The main results are new for equations in \mathbb{R}^n as well.

1. Introduction. Differential equations with impulse effect describe the evolution of systems subject to perturbations of negligible duration. Systems with a finite number of degrees of freedom were considered in [1, 2] and a number of subsequent works by many authors.

In the present paper sufficient conditions are given for the existence of bounded and periodic solutions of linear and weakly non-linear differential equations with impulse effect in a Banach space on the axis or semi-axis. Moreover, the main results obtained are new for equations in \mathbb{R}^n as well.

2. Preliminary notes. Let X be a complex Banach space, L(X) be the set of all linear bounded operators $X \to X$. Consider the equation with impulse effect

$$\frac{dx}{dt} = Ax + F(t,x) + \sum_{j=-\infty}^{\infty} [Bx + H_j(x)]\delta(t-t_j).$$
(1)

Here δ is Dirac's delta-function; the points t_i are fixed so that

 $t_j < t_{j+1} \ (j \in \mathbf{Z}), \ t_j \to \pm \infty \ (j \to \pm \infty);$

Received October 19, 1987.

AMS(MOS) Subject Classifications: 34G20.