OSCILLATIONS OF SYSTEMS OF NEUTRAL DIFFERENTIAL EQUATIONS

I. Györi

Computing Centre of the Szeged University of Medicine Pecsi n. 4/a 6720 Szeged, Hungary

G. LADAS

Department of Mathematics, University of Rhode Island Kingston, Rhode Island 02881, USA

Abstract. We obtained sufficient conditions for the oscillation of all solutions of the system of neutral delay differential equations

$$\frac{d}{dt}[x(t) - Px(t-\tau)] + \sum_{k=1}^{m} Q_k x(t-\sigma_k) = 0,$$

where P is an $n \times n$ diagonal matrix with diagonal entries p_1, p_2, \ldots, p_n such that

$$0 \le p_i \le 1$$
 for $i = 1, 2, ..., n$,

the delays τ and σ_k for $k=1,2,\ldots,m$ are nonnegative and for each $k=1,2,\ldots,n$ the entries $q_{ij}^{(k)}$ of the $n\times n$ matrix Q_k are real numbers. Our results can be extended to systems with the Q_k 's continuous $n\times n$ matrices.

1. Introduction. Recently, Ladas and Sficas [7] obtained sufficient conditions for the oscillation of all solutions of the neutral delay differential equation (NDDE)

$$\frac{d}{dt}[x(t) - px(t-\tau)] + qx(t-\sigma) = 0, \tag{1}$$

where

$$0 \le p \le 1, \quad q > 0 \quad \text{and} \quad \tau, \ \sigma \ge 0.$$
 (2)

Our aim in this paper is to extend some of the results obtained in [7] to systems of NDDEs of the form

$$\frac{d}{dt}[x(t) - Px(t - \tau)] + \sum_{k=1}^{m} Q_k x(t - \sigma_k) = 0,$$
(3)

Received September 30, 1987.

AMS(MOS) Subject Classifications: 34K15.