Differential and Integral Equations, Volume 3, Number 2, March 1990, pp. 285-293.

ON NONUNIFORM ASYMPTOTIC STABILITY FOR NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS

T.A. BURTONt

Department *of* Mathematics, *Southern* Illinois *University, Carbondale, IL 62901 USA*

L. HATVANI[†]

BoJyai Institute, Aradi *Vertamik tere 1, H-6720 Szeged,* Hungary

(Submitted by: C. Corduneanu)

1. Introduction. Denote by *C* the space of continuous functions $\varphi : [-h, 0] \rightarrow$ \mathbb{R}^n . For $\varphi \in C$ we will use the norms $\|\varphi\| := \max_{-h \le s \le 0} |\varphi(s)|$ and $\|\varphi\| :=$ $\left[\int_{-h}^{0} \varphi^2(s) ds\right]^{1/2}$. Given $H > 0$, C_H denotes the set of $\varphi \in C$ with $\|\varphi\| < H$. If $x : [t_0 - h, T] \to \mathbb{R}^n$ $(0 \le t_0 < T \le \infty)$ is continuous and $t \in [t_0, T)$, we define $x_t \in C$ by $x_t(s) = x(t+s)$ for $s \in [-h,0]$. Let $x'(t)$ denote the right-hand derivative at t if it exists and is finite.

Consider the system

$$
x'(t) = F(t, x_t) \tag{1.1}
$$

where $F: \mathbb{R}_+ \times C_H \to \mathbb{R}^n$ is continuous and takes bounded set into bounded sets, $\mathbb{R}_+ := [0, \infty), 0 < H \leq \infty$. It is known [1] that for each $t_o \in \mathbb{R}_+$ and each $\varphi \in C_H$ there is at least one solution $x(t_0, \varphi) = x(\cdot, t_0, \varphi)$ defined on an interval $[t_0, t_0 + \alpha)$, $\alpha > 0$. We suppose that $F(t, 0) \equiv 0$ so that $x = 0$ is a solution of (1.1) and is called the zero solution.

Generalizing Lyapunov's classical stability theory on ordinary differential equations (ODE's) to functional differential equations (FDE's), Krasovskii [2] replaced the Lyapunov function $V : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}$ with a continuous functional $V : \mathbb{R}_+ \times$ $C_H \rightarrow \mathbb{R}$, whose derivative V' with respect to (1.1) was defined by

$$
V'(t,\varphi) := \lim_{\delta \to 0} \sup [V(t+\delta, x_{t+\delta}(t,\varphi)) - V(t,\varphi)]/\delta.
$$

Definition 1.1. The zero solution of (1.1) is said to be stable if for each $\epsilon > 0$ and $t_0 \in \mathbb{R}_+$ there is a $\delta = \delta(\epsilon, t_0) > 0$ such that $[\varphi \in C_\delta, t \geq t_0]$ imply that $|x(t,t_0,\varphi)| < \epsilon$. If δ is independent of t_0 , then the zero solution is uniformly stable (U.S.). *The zero solution is asymptotically stable* (A.S.) if *it is stable* and *if for each* $t_0 \in \mathbb{R}_+$ there is a $\sigma = \sigma(t_0) > 0$ such that $\varphi \in C_\sigma$ implies that $x(t, t_0, \varphi) \to 0$ as $t \rightarrow \infty$. The zero solution is uniformly asymptotically stable (U.A.S.) if it is U.S.

An International Journal for Theory & Applications

Received January 4, 1989.

tResearch was supported in part by an NSF grant NSF-DMS-8521408.

[:]j:Research was supported in part by the Hungarian Foundation for Scientific Research 6032/6319. AMS Subject Classifications: 34K20.