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Abstract. We consider the nonlinear one dimensional heat equation in Qr = 
[0, T] x [0, L], where both the temperature u and the conductivity coefficient a 
are unknown. The temperature and its spatial derivative Dxu are known on the 
parabolic boundary of Qr, and the nonlinear function a is known in a certain 
temperature interval. The inverse problem is reduced to a quasilinear parabolic 
initial boundary value problem, which is solved by a linearization procedure. 

0. Introduction and notation. This paper deals with identifying (in par
ticular, proving the existence of) the nonlinear function a in the parabolic initial 
boundary value problem 

Dtu(t,x) = Dx(a(u(t,x)) · Dxu(t,x)) + f(t,x), (t,x) E Qr = [O,T] x [O,LJ 
(0.1) 

u(t, 0) = g1(t), 0:::; t:::; T (0.2) 

u(O,x) = g2(x), 0:::; x:::; L 

u(t, L) = g3 (t), 0 :S t:::; T. 

(0.3) 

(0.4) 

It is well-known that for every prescribed (and smooth) positive function a, prob
lem (0.1)-(0.4) admits a unique local solution, provided the data J, g1 , g2 , g3 are 
sufficiently regular and satisfy compatibility conditions. 

On the contrary, in our case the function a is unknown, so that additional in
formation is needed to determine the pair ( u, a). We consider here the following 
additional conditions: 
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Dxu(t, 0) = g4(t), 0 :S t :S T 

Dxu(t, L) = gs(t), 0 :S t ::=; T 

a(r) = ao(r), T E R(g2) 
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