SOLUTIONS OF A NONLINEAR ODE APPEARING IN THE THEORY OF DIFFUSION WITH ABSORPTION

J.B. McLeodt

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

L.A. PELETIER!

Mathematical Institute, University of Leiden, PB 9512 2300, RA Leiden, The Netherlands

J.L. VAZQUEZ*

Departamento de Matemáticas, University Autónoma de Madrid, 28049 Madrid, Spain

Abstract. We investigate the existence of solutions of the nonlinear ordinary differential equation $(f^m)'' - \beta \eta f' + \alpha f - f^p = 0$, which appears when we want to find selfsimilar solutions of the form $u(x,t) = t^{-\alpha} f(\eta)$, $\eta = x t^{\beta}$, for the nonlinear parabolic equation $u_t = (u^m)_{xx} - u^p$ in $Q = \mathbb{R} \times (0,\infty)$. We consider the range of exponents $1 where the existence and uniqueness theory for this equation has some peculiar features. The similarity exponents are (necessarily) <math>\alpha = \frac{1}{p-1}$, $\beta = \frac{m-p}{2(p-1)} = \frac{\alpha}{2}$.

1. Introduction. We consider the nonlinear parabolic equation

$$u_t = (u^m)_{xx} - u^p \quad \text{in } Q = \mathbb{R} \times (0, \infty), \tag{1.1}$$

in which m and p are positive parameters. The equation appears in the theory of diffusion with absorption [2]. In this paper we investigate the existence and uniqueness of nonegative solutions to the Cauchy Problem for equation (1.1) in the exponent range

$$1$$

which offers a number of interesting phenomena. Thus, it has recently been shown in the paper [3] that equation (1.1) admits in the above range of exponents a solution $u(x,t) \in C(\overline{Q}), u \geq 0$ with initial data

$$u(x,0) = u_0(x) \in C(\mathbb{R}) \tag{1.3}$$

if we impose on the initial function a growth restriction of the type

$$0 \le u_0(x) \le c_0(k^2 + |x|^2)^{\gamma/2}, \tag{1.4}$$

Received for publication September 9, 1990.

[†]Partially supported by NSF, SERC and US Army Grant No. DAJA-86-C-0040.

[‡]Partially supported by EEC Grant SC1-0019-C(TT).

^{*}Partially supported by EEC Grant SC1-0019-C(TT) and Spanish Project PB 86-0112-C0201. AMS Subject Classifications: 34B15, 35K55.