Differential and Integral Equations, Volume 4, Number 5, September 1991, pp. 1023-1040.

AN APPLICATION TO BIFURCATION PROBLEMS OF CUSPS IN BANACH SPACES

D. Lupo

Dipartimento di Scienze Matematiche, Trieste, Italy

A.M. MICHELETTI

Istituto "U. Dini" Facolta' Ingegneria, Pisa, Italy

(Submitted by: Jean Mawhin)

1. Introduction and statement of the results. Let X, Y, B be Banach spaces, $f: B \times X \to Y$ a C^3 function such that for each $\lambda \in B$, $f(\lambda, 0) = 0$. In this paper we want to show how to deduce some results on bifurcation for f by means of the geometrical information obtained by singularity theory. More precisely, we define a map $\Phi: B \times X \to B \times Y$ as

$$\Phi(\lambda, x) := (\lambda, f(\lambda, x));$$

we observe that

$$f(\lambda, x) = 0$$
 if and only if $\Phi(\lambda, x) = (\lambda, 0)$, (0)

and we assume $(\lambda^*, 0)$ to be a cusp point for Φ . Therefore f satisfies, at $(\lambda^*, 0)$, the following conditions (see [1] and [4]):

- 1. dim Ker $f'_x(\lambda^*, 0) = 1$, Im $f'_x(\lambda^*, 0)$ is closed, codim Im $f'_x(\lambda^*, 0) = 1$.
- 2. $\langle f_{xx}''(\lambda^*, 0)[v_0][v_0], \gamma_0 \rangle = 0$, where $\gamma_0 \in Y^* \setminus \{0\}^1$ is such that Ker $\gamma_0 =$ Im $f_x'(\lambda^*, 0)$ and v_0 is a vector generating Ker $f_x'(\lambda^*, 0)$.
- 3. There exists a $(\hat{\mu}, \hat{v}) \in B \times X$ such that

$$\langle f_{xx}''(\lambda^*, 0)[v_0][\hat{v}], \gamma_0 \rangle + \langle f_{\lambda x}''(\lambda^*, 0)[v_0][\hat{\mu}], \gamma_0 \rangle \neq 0.$$
 (H₁)

4. $\langle f_{xxx}''(\lambda^*, 0)[v_0][v_0][v_0], \gamma_0 \rangle + 3 \langle f_{xx}''(\lambda^*, 0)[v_0][\Gamma v_0], \gamma_0 \rangle \neq 0$, where $\Gamma z = -f'_x(\lambda^*, 0)^{-1} (f_{xx}''(\lambda^*, 0)[z][v_0]).$

Our goal is to show in which cases the fact that $(\lambda^*, 0)$ is a cusp point for Φ implies that $(\lambda^*, 0)$ is a bifurcation point for the map f, and in such a case to describe the precise behaviour of the branch of bifurcation. Note that the bifurcation parameter λ can lie in any Banach space B.

Received July 1989, in final form May 1990.

AMS Subject Classifications: 58E07, 58C27, 35B32, 24C23.

 $^{{}^{1}}X^{*}$ denotes the dual of the Banach space X.