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1. Introduction and statement of the results. Let X, Y, B be Banach 
spaces, f : B X X --+ y a C 3 function such that for each ..\ E B' f( ..\, 0) = 0. In this 
paper we want to show how to deduce some results on bifurcation for f by means 
of the geometrical information obtained by singularity theory. More precisely, we 
define a map <I> : B X X --+ B x Y as 

<!>(..\, x) := (..\, f(..\, x)); 

we observe that 

f(..\, x) = 0 if and only if <!>(..\, x) = (..\, 0), (0) 

and we assume ( ..\ *, 0) to be a cusp point for <I>. Therefore f satisfies, at (.X*, 0), the 
following conditions (see [1] and [4]): 

1. dimKer f~(.X*,O) = 1, Im f~(.X*,O) is closed, codim lm f~(.X*,O) = 1. 

2. (f~x(.X*,O)[vo][vo],""Yo) = 0, where ""Yo E Y*\{OP is such that Ker ""Yo 
lm f~ (A*, 0) and vo is a vector generating Ker f~ (A*, 0). 

3. There exists a (fj., v) E B x X such that 

4. (f~~x ( ..\ *, 0) [vo][vo][vo], ""Yo) + 3 U~x (A*, 0) [vo][fvo], ""Yo) "/:- 0, where 
fz = -j~(..\*,o)- 1 (f~x(.X*,O)[z][vol). 

Our goal is to show in which cases the fact that (.X*, 0) is a cusp point for <I> implies 
that (..\*,0) is a bifurcation point for the map j, and in such a case to describe the 
precise behaviour of the branch of bifurcation. Note that the bifurcation parameter 
..\ can lie in any Banach space B. 
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