Differential and Integral Equations, Volume 6, Number 1, January 1993, pp. 215-223.

REMARKS ON RESONANCE PROBLEMS WITH UNBOUNDED PERTURBATIONS

M. RAMOS[†]

U.C.L. Institut de Math. Pure et Appl., Chemin du Cyclotron, 2, 1348 Louvain-la-Neuve, Belgium

(Submitted by: Jean Mawhin)

Abstract. We consider a class of unbounded perturbations of a linear resonant problem with Dirichlet and Neumann boundary conditions and use elementary variational methods to show the existence of a solution.

1. Introduction and statement of results. Let Ω be a bounded smooth domain of \mathbb{R}^N , $N \geq 1$. We are concerned with the nonlinear resonance problem

$$\Delta u + \lambda u + g(x, u) = h(x) \quad \text{in } \Omega \tag{1}$$

with Dirichlet boundary condition

$$u = 0 \quad \text{on } \partial \Omega \tag{2}$$

or Neumann boundary condition

$$\frac{\partial u}{\partial n} = 0$$
 on $\partial \Omega$. (3)

Here λ is an eigenvalue of $-\Delta$ in Ω with boundary conditions (2) or (3), $h(x) \in L^2(\Omega)$ and $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is a nonlinear term satisfying hypotheses to be specified below.

Throughout the paper it is assumed that g(x, s) is a Caratheodory function; i.e., $g(\cdot, s)$ is measurable on Ω for each $s \in \mathbb{R}$ and $g(x, \cdot)$ is continuous on \mathbb{R} for almost every $x \in \Omega$. Assuming some growth and sign conditions on g(x, s), we search for (weak) solutions of problems (1)-(2) or (1)-(3) as critical points in $H_0^1(\Omega)$ or $H^1(\Omega)$, respectively, of the functional

$$f(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - \frac{1}{2} \lambda u^2 - G(x, u) + h(x)u \right) dx,$$

where G(x, s) denotes the primitive $\int_0^s g(x, t)dt$ (the growth condition assumed below on g(x, s) will ensure that f is C^1).

Received for publication December 1990.

[†]On leave from Faculdade de Ciências de Lisboa with a scholarship from I.N.I.C. AMS Subject Classifications: 35J25, 58E30.