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1. Introduction. In this paper we consider the equation 

{ 
-L\u = V(x)eu in fl c JRZ, 

u = 0 on an, 
(1) 

where fl is a bounded domain and V(x) is a given function in £=(fl). 
In [1], H. Brezis and F. Merle study this equation and obtain the following 

uniform estimates for the solutions of (1). 

Theorem 1. Assume (un) is a sequence of solutions of (1) which satisfies 

and 

IIVn(x)I!Loo < C, 

Vn(x) 2: 0 on n, 

Then (un) is bounded in L~c(rl). 

(2) 

(3) 

(4) 

The aim of this paper is to answer a question raised by H. Brezis and F. Merle. 
Namely, we show that condition (3) is essential for this theorem. 

2. Construction of the sequences ( un) and (Vn)· We shall prove the fol
lowing theorem in this section: 

Theorem 2. There exist sequences (Vn) and (un) in fl = {x E JR2 : lxl < 1} 
satisfying (2) and (4) (but not (3)) with Un 2: 0 inn such that un(O)--+ +oo. 

Fort> 0, let Dt be the domain Dt = {x E lR2 : lxl < t} and for 1 2: a 2: b > 0, 
let u a,b( x) be the function defined on D1 by 

{ 
1 on Da \Db, 

O'a,b(x) = O 
otherwise. 

Let u = Ua,b be the solution of 

{ 
-.6-u = -O'a,beu + 1347rb 

u=O 

in D1 , 

on 8D1, 

where 8 is the Dirac function at x = 0. 

(5) 

It is well-known that (5) admits an unique solution. One may, for example, use 
sub and super solutions to obtain the existence and use the maximum principle to 
obtain the uniqueness. 
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