Differential and Integral Equations, Volume 5, Number 5, September 1992, pp. 1041-1048.

LOG-CONCAVITY OF THE PRINCIPAL EIGENFUNCTION OF A LINEAR PERIODIC-PARABOLIC EIGENVALUE PROBLEM

M. BITTERLIN

Institute of Mathematics, Universität Zürich, Rämistrasse 74, 8001 Zürich, Switzerland

(Submitted by: Peter Hess)

Abstract. A famous result by Brascamp-Lieb [2] says that in a bounded strongly convex domain, the principal eigenfunction of $-\Delta$, subject to Dirichlet boundary conditions, is log-concave. In this paper we prove, the same result for a periodic-parabolic eigenvalue problem. This result does not immediately follow from the known concavity results (e.g., [4]) since it is always assumed there that one starts with a log-concave initial condition (whereas this is one of the unknowns in periodic problems).

1. Introduction. Let $\Omega \subset \mathbb{R}^N$ $(N \ge 1)$ be a bounded domain with boundary of class $C^{2+\mu}$, $\mu \in (0,1)$. In this note, we study the log-concavity of the principal eigenfunction of the linear periodic-parabolic eigenvalue problem

$$\begin{cases} \partial_t u - \sum_{j,k=1}^N a_{jk}(t) \partial_j \partial_k u + \sum_{j=1}^N a_j(t) \partial_j u = \lambda m(x,t) u & \text{ in } \Omega \times \mathbb{R}, \\ u = 0 & \text{ on } \partial\Omega \times \mathbb{R}, \\ u(x,t+T) = u(x,t) & \text{ in } \Omega \times \mathbb{R}, \end{cases}$$
(1)

where T > 0 is a given period and the weight function m belongs to the real Banach space

$$E := \{ w \in C^{\mu, \frac{\mu}{2}}(\bar{\Omega} \times \mathbb{R}) : w \text{ is } T \text{-periodic in } t \}.$$

The *T*-periodic coefficient functions $a_{jk} = a_{kj}, a_j$ belong to to the class $C^{\frac{\mu}{2}}$ and the matrix $[a_{ik}(t)]$ is positive definite for all $t \in \mathbb{R}$.

By a result of Beltramo and Hess [1], problem (1) has a positive eigenvalue $\lambda_1(m)$ having a positive eigenfunction Φ lying in the real Banach space

$$F := \{ w \in C^{2+\mu, 1+\frac{\mu}{2}}(\bar{\Omega} \times \mathbb{R}) : w = 0 \text{ on } \partial\Omega \text{ and } w \text{ is } T \text{-periodic in t } \}$$

if and only if $\int_0^T \max_{x \in \bar{\Omega}} m(x,t) dt > 0$. Moreover, $\lambda_1(m)$ is the unique positive eigenvalue having a positive eigenfunction Φ and it is simple. The notions of positive principal eigenvalue and principal eigenfunction are thus justified.

The aim of this note is to prove the following:

An International Journal for Theory & Applications

Received July 1991.

AMS Subject Classifications: 35E10, 35K20.