THE PERRON INTEGRAL IN ORDINARY DIFFERENTIAL EQUATIONS*

ŠTEFAN SCHWABIK

Mathematical Institute, Czechoslovak Academy of Sciences Žitná 25, 115 67 Praha 1, Czechoslovakia

(Submitted by: Jean Mawhin)

Abstract. The integral form of the initial value problem $\dot{x}=f(t,x), \quad x(\alpha)=v$ for an ordinary differential equation is $x(t)=x(\alpha)+\int_{a}^{t}f(s,x(s))\,ds$. Results are obtained when the integral in this equation is treated as the Perron integral. The Henstock-Kurzweil summation approach to the Perron integral is used extensively. It is shown that all known conditions for the existence of a solution concern the case of a Carathéodory right hand side perturbed by a Perron integrable function.

The present approach to the concept of an ordinary differential equation goes back to C. Carathéodory, in particular to his book [3] published in 1918. In this work Carathéodory accomplished the construction of a calculus course based purely on the concept of the Lebesgue integral.

To solve an ordinary differential equation of the form

$$\dot{x} = f(t, x),\tag{1}$$

with $f:[a,b]\times B\to\mathbb{R}^n$ where $B\subset\mathbb{R}^n$ is an open set (e.g., $B=B_c=\{x\in\mathbb{R}^n:\|x\|\leq c\}$), in the classical setting means:

Find (if possible, all) functions $x: J \to \mathbb{R}^n$ defined on a nondegenerate interval $J \subset [a,b]$ such that

$$x(t) \in B \text{ for } t \in J,$$
 (2)

$$x$$
 is differentiable everywhere in J ; (3)

i.e., the derivative $\dot{x}(t)$ exists for every $t \in J$ and

$$\dot{x}(t) = f(t, x(t)) \text{ for every } t \in J.$$
 (4)

A function $x: J \to \mathbb{R}^n$ satisfying (2), (3) and (4) is called a *solution* of (1) and of course the properties are satisfied componentwise; i.e., if $x = (x_1, \dots, x_n)$ then (3) means that all x_k , $k = 1, \dots, n$ are differentiable and (4) reads

$$\dot{x}_k(t) = f_m(t, x_1(t), \dots, x_n(t)) \text{ for } t \in J \text{ and } k = 1, \dots, n,$$

AMS Subject Classifications: 34A34, 26A39.

Received for publication March 1992.

^{*}This research was supported by the GA ČSAV No. 11928.