Differential and Integral Equations, Volume 6, Number 6, November 1993, pp. 1253-1264.

REMARKS ON THE ASYMPTOTIC BEHAVIOUR FOR ELLIPTIC EQUATIONS WITH CRITICAL GROWTH

NAOYUKI ISHIMURA

Department of Mathematics, Faculty of Science, University of Tokyo, Tokyo, 113 Japan

(Submitted by: Roger Nussbaum)

Abstract. We discuss the asymptotic behaviour of positive solutions u_{ϵ} to the Dirichlet problem: $-\Delta u - \lambda(\epsilon)u = N(N-2)u^{p-\epsilon}$ in the unit ball, where p = (N+2)/(N-2) is the critical Sobolev exponent. We show that the rate of convergence of u_{ϵ} as $\epsilon \to 0$ varies widely with suitable $\lambda(\epsilon)$.

1. Consider the problem

(I)
$$\begin{cases} -\Delta u - \lambda(\varepsilon)u = N(N-2)u^{p-\varepsilon} & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where Ω is the unit ball in \mathbb{R}^N with $N \ge 3$, p = (N+2)/(N-2), $\varepsilon \ge 0$ and $\lambda(\varepsilon)$ is a given function of ε .

We recall some known results:

- (1) Every solution of (I) is radially symmetric and decreasing (see [5]).
- (2) If $\varepsilon > 0$, problem (I) has a solution u_{ε} for any $\lambda(\varepsilon) < \lambda_0$. If $\varepsilon = 0$ and if $N \ge 4$, problem (I) has a solution if and only if $\lambda(0) \in (0, \lambda_0)$, but if N = 3, it has one if and only if $\lambda(0) \in (\frac{1}{4}\lambda_0, \lambda_0)$. Here, λ_0 denotes the principal eigenvalue of $-\Delta$ on the unit ball (see [3]).

Here we want to discuss the asymptotic behaviour of u_{ε} as $\varepsilon \to 0$. In [2], Atkinson and Peletier, using ODE methods, made the first study when $\lambda(\varepsilon) \equiv 0$. There they showed that any solution u_{ε} of (I) has the following limiting behaviour:

$$\lim_{\varepsilon \to 0} \varepsilon^{1/2} \cdot u_{\varepsilon}(0) = \left(\frac{2\sigma_N}{N-2}\right)^{1/2} \left(\frac{N(N-2)}{S_N}\right)^{N/4}$$
$$\lim_{\varepsilon \to 0} \varepsilon^{-1/2} \cdot u_{\varepsilon}(x) = \left(\frac{2\sigma_N}{N-2}\right)^{-1/2} \left(\frac{N(N-2)}{S_N}\right)^{-N/4} (N-2)\sigma_N G(x) \text{ at any } x \neq 0,$$

where we denote by G(x) the Green's function of $-\Delta$ on the unit ball, σ_N is the area of the unit sphere in \mathbb{R}^N and S_N is the best Sobolev constant:

$$\sigma_N = \frac{2\pi^{N/2}}{\Gamma(N/2)}, \qquad S_N = \pi N(N-2) \left(\frac{\Gamma(N/2)}{\Gamma(N)}\right)^{2/N}$$

Received for publication August 1992.

AMS Subject Classifications: 35B05.