HOMOGENIZATION OF SOME QUASILINEAR PROBLEMS FOR STRATIFIED MEDIA WITH LOW AND HIGH CONDUCTIVITIES

B. HERON

Laboratoire d'Analyse Numérique, Bâtiment 425, Université Paris-Sud, 91405 Orsay, France

J. Mossino

CNRS et Laboratoire de Physique Mathématique, Modélisation et Simulation 3A Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France

C. PICARD

Faculté de Mathématiques et d'Informatique, Université de Picardie 33 Rue Saint-Leu, 80039 Amiens Cedex, et Laboratoire d'Analyse Numérique d'Orsay, France

(Submitted by: Roger Temam)

Abstract. We are concerned with the homogenization of quasilinear elliptic problems $(\mathcal{P}^{\varepsilon})$ on structures which are stratified in some direction (say x_1), when the coefficients belong to L^{∞} but are neither uniformly bounded from above or from below with respect to ε . The general framework of this study covers as a subcase the case of linear diffusion equations with conductivity matrices $A^{\varepsilon}(x_1)$ which are diagonal and, as well as their inverses, are not uniformly elliptic with respect to ε . We give assumptions on the coefficients –convergence in the sense of measures and a weakened uniform ellipticity condition– which imply the convergence of the problems $(\mathcal{P}^{\varepsilon})$ to a problem of the same form with L^{∞} –coefficients too.

0. Introduction. Let $\Omega =]0, 1[\times \Omega']$ be a cylindrical domain in \mathbb{R}^N representing a structure which is stratified in the x_1 -direction; we consider quasilinear elliptic problems $(\mathcal{P}^{\varepsilon})$ -well-posed in the Sobolev space $W^{1,p}(\Omega)$ - of the form

$$\begin{cases} -\frac{\partial}{\partial x_1}g_1\left(x,a_1^{\varepsilon}(x_1)\frac{\partial u^{\varepsilon}}{\partial x_1}\right) - \sum_{i=2}^N a_i^{\varepsilon}(x_1)^{p-1}\frac{\partial}{\partial x_i}g_i\left(x',\frac{\partial u^{\varepsilon}}{\partial x_i}\right) = f \text{ in } \Omega, \\ +\text{boundary conditions } L, \end{cases}$$
($\mathcal{P}^{\varepsilon}$)

where $x = (x_1, x')$, $x' = (x_2, \ldots, x_N)$ and L stands for Dirichlet or mixed Dirichlet-Neumann boundary conditions. It is supposed that the functions g_i have suitable growth and convexity properties, and that the coefficients a_i^{ε} which only depend on x_1 , that is, the meaning of stratification in this paper, satisfy $C_i^{\varepsilon} \ge a_i^{\varepsilon}(x_1) \ge c_i^{\varepsilon} > 0$ almost everywhere for $i = 1, \ldots, N$.

This paper is devoted to the homogenization of such problems in the case where the functions a_i^{ε} and $\frac{1}{a_i^{\varepsilon}}$ may not be bounded in $L^{\infty}(0,1)$ as ε tends to zero.

Instead of fully describing the class of problems $(\mathcal{P}^{\varepsilon})$ that are concerned, let us introduce the chosen framework by examples of growing generality. The simplest

Received October 1992.

AMS Subject Classifications: 35B27, 35A15,73B27.