FUJITA TYPE PHENOMENA FOR REACTION-DIFFUSION EQUATIONS WITH CONVECTION LIKE TERMS

CATHERINE BANDLE

Mathematisches Institut, Universitat Basel, Rheinsprung 21, 8041 Basel, Switzerland

HOWARD A. LEVINE*

Department of Mathematics, Iowa State University, Ames, Iowa 50011

Dedicated to the memory of our friend and colleague, Peter Hess

Abstract. We study the long time behavior of nonnegative solutions of the initial-boundary value problem, for $0 < T \le +\infty$,

$$u_t - \Delta u - \mathbf{b} \cdot \nabla u = u^p$$
 in $\mathbb{R}^N \times (0, T)$, $u(\mathbf{x}, 0) = u_0(\mathbf{x}) \ge 0$.

Here p > 1 and $\mathbf{b} = (b_1, \dots, b_N)$. We extend Fujita's result for the case $\mathbf{b} = \mathbf{0}$. He and others proved that if $1 , <math>T = +\infty$ implies that $u \equiv 0$ while if p > 1 + 2/N, for some choices of $u_0 \not\equiv 0$, $T = +\infty$. We consider separately the cases for which $\mathbf{b} = \mathbf{b}(u)$ and $\mathbf{b} = \mathbf{b}(\mathbf{x})$. We also discuss this problem to a limited degree when \mathbb{R}^N is replaced by a cone.

1. Introduction. This note is concerned with the question of the global existence of nonnegative solutions of problems of the type

$$u_t - \Delta u - (\mathbf{b}, \nabla u) = u^p \quad \text{in} \quad D \times (0, T)$$

$$u = 0 \quad \text{on} \quad \partial D \times (0, T)$$

$$u(\mathbf{x}, 0) = u_0(\mathbf{x}) \ge 0, \quad u(\mathbf{x}, t) \ge 0,$$

$$(1.1)$$

where $\mathbf{b}=(b_1,b_2,\ldots,b_N)$, $b_i=b_i(\mathbf{x},u)$, p>1 and D is either \mathbb{R}^N (and then the boundary condition is dropped) or some other (unbounded) region. Here T is the maximal time of existence, $T\leq +\infty$. When $T=+\infty$ we say u is global. Otherwise we say "u blows up in finite time" and use this as a euphemism for the statement that u is not global in time.

Equation (1.1) can be interpreted as a model for a reaction-diffusion process where u represents the temperature, u^p is a nonlinear source term and the convection $(\mathbf{b}, \nabla u)$ can be caused by an external flow field.

Received June 1993.

^{*}Supported in part by NSF Grant DMS 9102210.

AMS Subject Classifications: 35K15, 35K55.