ON SOME SPACES OF FUNCTIONS WITH BOUNDED DERIVATIVES BETWEEN MANIFOLDS

FRANÇOISE DEMENGEL

Université de Cergy-Pontoise, 47-49 Avenue des Genottes B.P. 8428, 95806 Cergy Pontoise, France

(Submitted by: Roger Temam)

This paper is devoted to some properties of the spaces of distributions between two manifolds M, N, whose certain derivatives are bounded measure. M and N are supposed to be C^1 , compact, M being with or without boundary, N being without boundary. Sobolev spaces between manifolds $W^{1,p}(M, N)$ have been studied by Bethuel and Zheng [2] and Escobedo [10] for higher order spaces $W^{m,p}$. By the Theorem of Nash-Moser, N is isometrically imbedded in some space \mathbb{R}^{ℓ} and then $W^{1,p}(M, N) \hookrightarrow W^{1,p}(M, \mathbb{R}^{\ell})$. Unfortunately all the properties of $W^{1,p}(M, \mathbb{R}^{\ell})$ cannot be extended to $W^{1,p}(M, N)$. For example, density of smooth maps $\mathcal{C}^{\infty}(M, N)$ does not always hold in $W^{1,p}(M, N)$. For $p \ge \dim M$ it is true, and for $p < \dim M$ it depends on the homotopy group $\pi_{[p]}(N)$. We refer to [1] for complete results concerning that question. In [4], we studied the particular case p = 1, and $N = S^1$. We gave a necessary and sufficient condition on $u \in W^{1,p}(M, S^1)$ to be a strong limit in $W^{1,1}$ of maps in $\mathcal{C}^{\infty}(M, S^1)$. At the same time, We remarked that weak-star density of $\mathcal{C}^{\infty}(M, S^1)$ holds in $W^{1,1}$.

We define here the spaces $BV(M, S^1)$ and $BD(M, S^1)$ which are naturally related with the theory of calculus of variations and to plasticity.

$$BV(M, S^1) = \{ u \in L^1(M, S^1), \ \nabla u \in M^1 \},\$$

where M^1 denotes the space of bounded measures on M.

When dim M = 2,

$$\begin{split} BD(M,S^1) &= \{ u \in L^1(M,S^1), \ (\nabla u + {}^t \nabla u) \in M^1 \} \\ &= \{ u \in L^1(M,S^1), \ \forall \ i,j \in [1,2], \ \varepsilon_{ij}(u) = \frac{u_{i,j} + u_{j,i}}{2} \in M^1 \}. \end{split}$$

And the question we raise here is

Is
$$\mathcal{C}^{\infty}(M, S^1)$$
 weakly dense in $BV(M, S^1)$ and $BD(M, S^1)$?

We prove the weak density result of $\mathcal{C}^{\infty}(M, S^1)$ in $BV(M, S^1)$ in the second section. Let us note that for $k \geq 2$, $\mathcal{C}^{\infty}(M, S^k)$ is weakly dense in $BV(M, S^k)$ by standard

Received May 1993, in revised form May 1994.

AMS Subject Classifications: 35C.